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Abstract: The search for a more efficient and robust numerical method for solving problems have become an interesting 

area for many researchers as most problems resulting into nonlinear system of equations would require a very good numerical 

method for its computation. The introduction of the Broyden method has served as the foundation to developing several others, 

which are referred to as Broyden – like methods by some authors. These methods, in most cases, have proven to be superior to 

the original classical Broyden method in terms of the number of iterations needed and the CPU time required to reach a 

solution. This research sought to develop new Broyden – like methods using weighted combinations of quadrature rules (i.e., 

Simpson -1/3 and Simpson -3/8 rules against Midpoint, Trapezoidal, and Simpson quadrature rules). The weighted 

combination of the quadrature rules in the development of the new methods led to the discovery of several new methods. Some 

of which have proven to be more efficient and robust when compared with some existing methods. A comparison of these 

newly developed methods with the classical Broyden method together with some existing improved Broyden method revealed 

that, one of the newly developed methods namely, Midpoint–Simpson-3/8 (MS–3/8) method, outperformed all the others, with 

the MS–3/8 method giving the best of numerical results in all the benchmark problems considered in the study. 

Keywords: Broyden Method, Newton-Raphson Method, Quadrature Rules, Simpson – 1/3 Rule, Simpson - 3/8 Rule, 

Nonlinear Systems, Convergence 

 

1. Introduction 

Finding solutions to equations is an important quest in 

mathematical computations. The roots of equations provide 

answers to many practical problems under study. Finding the 

most efficient numerical method for the purpose is very 

critical since the accuracy of the result for most practical 

problems is essential [3]. A problem becomes even more 

demanding if it requires solving a system of nonlinear 

equations after modeling. 

Nonlinear equations is one of the most important problems 

in numerical computations, especially for a diverse range of 

engineering applications, including applications in many 

scientific fields [14]. Many problems can be reduce to 

solving nonlinear equations, which is one of the basic 

problems in mathematics [1]. Great efforts have been made 

by researchers, and many constructive theories and 

algorithms are proposed to solve systems of nonlinear 

equations [13]. However, there still exist some problems in 

solving such systems. For most traditional numerical 

methods such as Newton’s method, the convergence and 

performance characteristics can be highly sensitive to the 

initial guess of the solution. However, it is very difficult to 

select a reasonable initial guess of a solution for most 

nonlinear equations [11]. The algorithm may fail or the 

results may be improper if the initial guess of the solution is 

unreasonable. Many different combinations of the traditional 

numerical methods and intelligent algorithms are applied to 

solve systems of nonlinear equations [15, 17], which can 

overcome the problem of selecting a reasonable initial guess 

of the solution. But the algorithms are too complicated or 
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expensive to calculate with when there are a number of 

nonlinear equations to solve simultaneously. 

Among the classes of numerical schemes for solving 

nonlinear systems of equations, the Newton–Raphson 

scheme remains popular. However, the Newton–Raphson 

method is confronted with some drawbacks, a major one of 

which is the need to compute the inverse Jacobian matrix 

iteration by iteration. This makes it inefficient for large sized 

problems especially [21], which provides the motivation for 

the current work. 

The Broyden method, which is a quasi-Newton method, 

has seen significant modifications and improvements and 

these have motivated other researchers to develop new 

methods capable of solving efficiently nonlinear systems of 

equations [1]. Many authors continue to present different 

techniques which are Newton-like schemes [23, 8, 7], Mixed 

Free Secant methods, or Quadrature formulas. 

One of such approaches which was used to improve the 

performance of the Broyden method, introduced the central 

finite difference to approximate the inverse Jacobian matrix 

which ended up proposing two improved classes of schemes 

[1]. In another research work, the Steepest Decent method 

was presented and used to obtain good and sufficient initial 

guess (starting values) before solving the problem with the 

Broyden method [16]. 

A leading trend of new methods developed for the 

computation of solutions of systems of nonlinear equations for 

the past few years has been to formulate iterative schemes using 

the quadrature rules. Some references in relation to developed 

methods using quadrature rules include [18, 21] [10]. 

Newton Cotes quadrature rules are a group of formulas for 

numerical integration based on evaluating the integrand at 

equally spaced points. Named after Isaac Newton and Roger 

Cotes [7], they fit data to local order k polynomial 

approximants. The Newton–Cotes quadrature formulas 

approximate the integral of a function � ��������  by 

evaluating the function at k nodes ��	, ��, … , �
�  and 

weighting those nodes with n weights �	, ��, … , �
 . The 

most common of Newton-Cotes quadrature formulas are the 

Mid-point, Trapezoidal and Simpson’s rules. The general 

form of the Newton–Cotes formula is; 

� �������� = ∑ �������
��	                   (1) 

The Newton’s method can be derived from the Taylor’s 

series expansion of a function (of a single variable) ���� 
about the point �	: 

���� = ���	� + �� − �	�����	� + 	�! �� − �	�������	� + ⋯ (2) 

where �, and its first and second derivatives ��	���	��� are 

evaluated at �	. In the case of a multiple variable function �: �
 → �
, (2) can be shown [20], to equivalently give: ���� = ����� + � �������  ! 	                  (3) 

The matrix of partial derivatives ����� appearing in (3) is 

the Jacobian J, where � �������  !  is multiple integrals as in 

(4): 

� �������  ! = � � ⋯� ��
 !,
� !,�	 !,	 ��	, ��, … , �
���
��
"	…��	                                        (4) 

The alternative approach is to treat the multiple integral as 

a nested sequence of one–dimensional integrals, and to use 

one-dimensional quadrature rule with respect to each 

argument in turn (Hafiz et al, 2012). Hence we can 

approximate � �������  !  with the weighted combination of 

quadrature formulas. The authors [6-8, 21, 20] and the 

references therein have proposed various methods for 

approximating the indefinite integral in equation (4) using 

Newton Cotes formulae of order zero to one. In a related 

work, a variant of the Broyden-like method was proposed 

using the weighted combination of the Trapezoidal, Simpson 

and Midpoint quadrature rules and this resulted into the 

Broyden-like method named TSMM, [21], given as; #� = �� − $%"	����� ��&	 = �� − 24)5$���� + 14$�,�� + 5$�#��-"	����� (5) 

where: ,� =  !&.!� , / = 0, 1, … 

The TSMM was compared with some existing methods 

such as the Classical Broyden (CB), Trapezoidal-Broyden 

(TB) and the Midpoint-Simpson-Broyden methods (MSB) 

and the TSMM method outperformed all other methods [21]. 

Another related work by the same author was carried out the 

following year which resulted into a robust Broyden-like 

method which was named the Midpoint-Trapezoidal (MT) 

method. The iterative scheme of the method is given as; #� = �� − $%"	����� ��&	 = �� − 4)$���� + 2$�,�� + $�#��-"	�����   (6) 

for ,� =  !&.!� , / = 0, 1, … 

The MT method was also compared with other existing 

methods such as the Classical Broyden (CB), Trapezoidal-

Broyden and Midpoint-Simpson-Broyden (MSB) methods 

and it came out that the MT method performed extremely 

better than all the others [20]. A notable fact in all the above 

mentioned Broyden-like methods is the continuous usage of 

the three common quadrature rules (i.e. Trapezoidal, 

Midpoint and Simpson rules). With the improved forms of 

some of these common quadrature rules, it was anticipated 

that further improved methods could be developed. 

This study approximates the integral in Equation (4) by 

using the weighted combination of the quadrature rules 

Trapezoidal, Midpoint, Simpson, Simpson’s 1/3 and 

Simpson’s 3/8 quadrature rules. 

The table below shows how the the quadrature rules were 

combined; 
 



 International Journal of Systems Science and Applied Mathematics 2021; 6(3): 77-94 79 

 

 

Table 1. Combination of Quadrature Rules to Yield New Broyden-like Methods. 

Quadrature rules Trapezoidal (T) Midpoint (M) Simpson (S) 

Simpson-1/3 (S-1/3) TS-1/3 MS-1/3 SS-1/3 

Simpson-3/8 (S-3/8) TS-3/8 MS-3/8 SS-3/8 

 

A related work by the authors [10] constructed a Broyden–

like method called the Trapezoidal–Simpson’s 3/8 method 

with the weighted combination of the Trapezoidal and 

Simpson’s 3/8 quadrature rules. Though this method 

performed better in some bench mark problems than the 

other Broyden–like methods, there were instances where 

some other methods had a better result. 

In this study the following objectives are achieved: (i) 

Development of five new Broyden – like methods using 

combined weights of the quadrature rules; (ii) The new 

methods are analysed by comparing the number of iterations 

and the CPU time with the existing Broyden–like methods 

using selected systems of nonlinear equations as test 

problems. In the rest of the paper, section 2.0 describes the 

general formula of Simpson 1/3 and 3/8 quadrature rule 

while section 3.0 gives details on how the newly developed 

methods were derived, with numerical tests and results well 

illustrated in section 4.0 and section 5.0 gives a summary 

conclusion on findings from the research. 

2. The General Formula of Simpson 1/3 

and 3/8 Quadrature Rule 

Most (if not all) of the developed formulas for integration 

are based on a simple concept of approximating a given 

function f (x) by a simpler function (usually a polynomial 

function) fi (x), where i represents the order of the polynomial 

function. Simpsons 1/3 rule for integration was derived by 

approximating the integrand f (x) with a 2
nd

 order (quadratic) 

polynomial function f2(x) [2], given by: 

f2 (x)=a₀+ a₁x + a₂x2
                           (7) 

Choosing 

{x0, f (x0)},{x1, f (x1)}and{x2, f (x2)} 

f (�4)=�4 + �	�4 + ���4� 

f (�	)=�4 + �	�	 + ���	� 

f (��)=�4 + �	�� + ����� 

51 �4 �4�1 �	 �	�1 �� ���6 7
�4�	��8 = 9�	��0��	��1��	��2�: 	);-<×<	�<×	 = �<×		                           (8) 

�< 	 = 7�4�	��8 = );-"	�	                       (9) 

Substituting (9) into (8), we obtain 

����� = )1, �, ��-[A]
−1 � 

Furthermore �4 = � 

�	 = � + ℎ = � + ? − �2 = � + ?2  

�� = � + 2ℎ = � + 2�? − 22 � = � + ?2  

Substituting the form of ����� into I=� �������� , we have @ ≈ � ���������  

= �? − �� B���4� + 4���	� + �����C6  

Since ℎ = �"�� 	⟹ ? − � = 2ℎ  the above equation 

becomes 

I ≈ 
�FG 	× 	H���4� + 4���	� + �����I 

� ������ ≈ J�"�G K L���� + 4� J�&�� K + ��?�M	��  (10) 

and this is the Simpson 1/3 quadrature rule. 

In a similar fashion, Simpson 3/8 rule for integration can 

be derived by approximating the given function f (x) with the 

3
rd

 order (cubic) polynomial f3(x) given as 

f3(x)=a0 + a1x + a2 x
2 
+ a3x

3=)1, �, ��, �<- N�4�	���<O 
The unknown coefficients a0, a1, a2, and a3 in (9) can be 

obtained by substituting four known coordinate data points 

{x0, f (x0)},{x1, f (x1)},{x2, f (x2)}and {x3, f (x3)} into it as 

follows: 

f (�4)=�4 + �	�4 + ���4� + �<�4< 

f (�	)=�4 + �	�	 + ���	� + �<�	< 

f (��)=�4 + �	�� + ����� + �<��< 

f (�<)=�4 + �	�< + ���<� + �<�<< 

The above can be put in matrix notation as: 

PQQ
QR1	�4	�4�	�4<1	�		�	�	�	<1	��	���	��<1	�<	�<�	��<STT

TU N�4�	���<O = PQQ
R �	��4��	��4	��	�����	��<� ST

TU	                      (11) 
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Expression (11), it can symbolically be represented as 	);-V×V	�V×	 = �V×	                      (12) 

Therefore: 

�V 	 = N�4�	���<O = );-"	�                    (13) 

Substituting (13) into (12), we obtain �<��� = )1, �, ��, �<-[A]
−1 �                  (14) 

Furthermore �4 = � 

�	 = � + ℎ = � + ? − �3 = 2� + ?3  

�� = � + 2ℎ = � + 2? − 2�3 = � + 2?3  

�< = � + 3ℎ = � + 3? − 3�3 = ? 

Substituting the form of �<��� into I=� �������� , we have  

@ ≈ � �<������� = �? − �� × HX� Y�&<X� Z�&X� Y�I[   (15) 

Since ℎ = �"�< 	⟹ ? − � = 3ℎ and Equation (15) becomes 

I ≈ 
<F[ 	× 	H���4� + 3���	� + 3����� + ���<�I 

Substituting ℎ = �"�<  into the above equation and rewriting 

the whole equation in terms of �	���	?, the general formula 

for Simpson’s 3/8 quadrature rule is given by (16) 

� ������ ≈ J�"�[ K J���� + 3� J��&�< K + 3� J�&��< K + ��?�K��  (16) 

3. Derivation of the New Broyden–Like 

Methods 

Derivation of TS-1/3 Method 

The Newton method is derived from the Taylor’s series 

expansion of a function (of a single variable) ���� about the 

point �; 

���� = ���	� + �� − �	�����	� + 12! �� − �	�������	� + ⋯ 

where � and its first and second derivatives, ��	���	���  are 

calculated at �	. For multiple variable function �, from the 

above equation, it can be shown that 

���� = ����� + \ ������� 
 !  

Suppose �∗  is a simple root of the nonlinear 

equation	���� = 0, where � is sufficiently differentiable. Let �: ^ ⊂ �
 → �
  be a smooth mapping that has continuous 

second order partial derivatives on a convex open set ^ ⊂ �
  

and that has a locally unique root �  in ^ , ���� =��	���, �����, … , �
����� , � = ��	, ��, … , �
� and ��: �
 → � 

is a nonlinear function, then we have equation (2) above. 

Taking into consideration the two quadrature rules that is; 

Trapezoidal quadrature rule 

� ���� ≈ J�"�� K ����� + ��?���� 	          (17) 

Simpson 1 3⁄  quadrature rule 

� ���� ≈ J�"�G K J���� + 4� J�&�� K + ��?�K�� 	     (18) 

Approximating the integral in equation (3) by the average 

of Trapezoidal and Simpson 1/3 (TS–1/3) quadrature rules 

yields: 

� �������  ! =  " !V )������ + �����- + J " !	� K a������ + 4�� J !& � K + �����b                        (19) 

Substituting equation (19) into (3), we have 

���� = ����� +  " !V )������ + �����- + J " !	� K a������ + 4�� J !& � K + �����b                          (20) 

Since ���� = 0, we get 

0 = ����� +  " !V )������ + �����- + J " !	� K a������ + 4�� J !& � K + +�����b                        (21) 

Multiplying through equation (21) by 
	� " !, we get 

0 = 	� " ! ����� + 3)������ + �����- + a������ + 4�� J !& � K + �����b                         (22) 

Expanding equation (22) gives 

0 = 12� − �� ����� + 3������ + 3����� + ������ + 4�� L�� + �2 M + ����� 
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0 = 	� " ! ����� + 3������ + 3����� + ������ + 4�� J !& � K + �����	                                     (23) 

⟹ −12� − �� ����� = 4������ + 4 L�� + �2 M + 4����� 
⟹ � − �� = −12�����4������ + 4�� J�� + �2 K + 4����� 
⟹ � = �� − −12�����4������ + 4�� J�� + �2 K + 4����� 

� = �� − 12 a4������ + 4�� J !& � K + 4�����b"	 �����	                                                         (24) 

Given �� ���	cd��e�f	� = ��&	 in equation (24), we have 

��&	 = �� − 12 a4������ + 4�� J !& !gZ� K + 4�����&	�b"	 �����	                                           (25) 

which is an implicit equation because the presence of ��&	 on both sides of (24). To avoid this, we use the �/ + 1�hF iteration 

of the Broyden’s method in the right hand side. Therefore: 

��&	 = �� − 12)4������ + 4���,�� + 4���#��-"	�����                                           (26) 

with #� = �� − $%"	����� and ,� =  !&.!�  

Now replacing ������ , ���#��  and ���,��  by $���� , $�#��  and $�,��  respectively and use the same procedure as 

prescribed in [4, 5, 9], we get ��&	 = �� − 12)4$���� + 4$�,�� + 4$�#��-"	�����                                           (27) 

Let $� = 4$���� + 4$�,�� + 4$�#�� ⟹ ��&	 = �� − 12$%"	�����	                                                     (28) 

Hence for a given initial solution �4 and initial matrix $4 = @ (@ an identity matrix), an approximate solution ��&	 can be 

computed by the iterative schemes as in [20], where: #� = �� − $%"	����� ��&	 = �� − 12)4$���� + 4$�,�� + 4$�#��-"	�����	                                           (29) 

for ,� =  !&.!� , / = 0, 1, … 

Derivation of MS-3/8 Method 

Consider the two quadrature rules: 

Midpoint quadrature rule 

� ���� ≈ �? − ��� J�&�� K��                                                                       (30) 

Simpson 3 8⁄  quadrature rule 

� ���� ≈ J�"�[ K L���� + 3� J��&�< K + 3� J�&��< K + ��?�M	��                                            (31) 

Approximating the integral in Equation 3 by the average of the Midpoint and Simpson 3/8 (MS–3/8) quadrature rules yields: 

� �������  ! =  " !� a�� J !& � Kb + J " !	G K a������ + 3�� J� !& < K + 3�� J !&� < K + �����b                           (32) 

Substituting Equation 32 into Equation 3, we have 

���� = ����� +  " !� a�� J !& � Kb + J " !	G K a������ + 3�� J� !& < K + 3�� J !&� < K + �����b                         (33) 

Since ���� = 0, we get 
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0 = ����� +  " !� a�� J !& � Kb + J " !	G K a������ + 3�� J� !& < K + 3�� J !&� < K + �����b             (34) 

Multiplying through Equation 34 by 
	G " !, we get 

0 = 	G " ! ����� + 8 a�� J !& � Kb + a������ + 3�� J� !& < K + 3�� J !&� < K + �����b                 (35) 

Expanding Equation 35 gives 

0 = 16� − �� ����� + 8�� L�� + �2 M + ������ + 3�� L2�� + �3 M + 3�� L�� + 2�3 M + ����� 
⟹ −16� − �� ����� = 8�� L�� + �2 M + ������ + 3�� L2�� + �3 M + 3�� L�� + 2�3 M + ����� 

⟹ � − �� = −16�����8�� J�� + �2 K + ������ + 3�� J2�� + �3 K + 3�� J�� + 2�3 K + ����� 
� = �� − 16 a8�� J !& � K + ������ + 3�� J� !& < K + 3�� J !&� < K + �����b"	 �����	                    (36) 

Setting � = ��&	 in Equation 36, we have 

��&	 = �� − 16 a8�� J !& !gZ� K + ������ + 3�� J� !& !gZ< K + 3�� J !&� !gZ< K + �����&	�b"	 �����	          (37) 

Setting �� J� !& !gZ< K ≈ �� J !&� !gZ< K ≈ �� J !& !gZ� K, Equation 37 becomes 

��&	 = �� − 16 a8�� J !& !gZ� K + ������ + 3�� J !& !gZ� K + 3�� J !& !gZ� K + �����&	�b"	 �����	            (38) 

��&	 = �� − 16 a8�� J !& !gZ� K + ������ + 3�� J� !& !gZ< K + 3�� J !&� !gZ< K + �����&	�b"	 �����	             (39) 

��&	 = �� − 16 a������ + 14�� J !& !gZ� K + �����&	�b"	 �����                                        (40) 

Which is an implicit equation because the presence of ��&	 at both sides of the equation, hence to avoid its implicit nature 

we use the �/ + 1�hF iteration of the Broyden’s method in the right hand side. Thus we have; ��&	 = �� − 16)������ + 14���,�� + ���#��-"	�����                                               (41) 

with #� = �� − $%"	����� and ,� =  !&.!�  

Now replacing ������ , ���#��  and ���,��  by $���� , $�#��  and $�,��  respectively and use the same procedure as 

prescribed in [4, 5, 9], we get ��&	 = �� − 16)$���� + 14$�,�� + $�#��-"	����� 
Let $� = $���� + 14$�,�� + $�#�� ⟹ ��&	 = �� − 16$%"	�����                                                                  (42) 

Hence we have the following method using initial matrix $4 = @ and an initial guess �4. For a given �4 using initial matrix $4 = @, an approximated solution for ��&	 can be computed by the iterative schemes as in [20]; #� = �� − $%"	����� ��&	 = �� − 16)$���� + 14$�,�� + $�#��-"	�����                                                             (43) 

for ,� =  !&.!� , / = 0, 1, … 

In a similar way as in the above derivations, four other methods have been developed and their iterative schemes are shown 

below; 

Derivation of MS-1/3 Method 

Midpoint quadrature rule 



 International Journal of Systems Science and Applied Mathematics 2021; 6(3): 77-94 83 

 

\ ���� ≈ �? − ��� L� + ?2 M	�
�  

Simpson 1 3⁄  quadrature rule 

\ ���� ≈ L? − �6 M L���� + 4� L� + ?2 M + ��?�M�
�  

Approximating the integral in equation (3) by the average of Midpoint and Simpson 1/3 (MS – 1/3) quadrature rules yields: 

� �������  ! =  " !� �� J !& � K + J " !	� K a������ + 4�� J !& � K + �����b                                      (44) 

Substituting equation (44) into (3), we have 

���� = ����� +  " !� �� J !& � K + J " !	� K a������ + 4�� J !& � K + �����b	                                        (45) 

Since ���� = 0, we get 

0 = ����� +  " !� �� J !& � K + J " !	� K a������ + 4�� J !& � K + �����b                                         (46) 

Multiplying through equation (46) by 
	� " !, we get 

0 = 	� " ! ����� + 6�� J !& � K + a������ + 4�� J !& � K + �����b                                            (47) 

Expanding equation (47) gives 

0 = 12� − �� ����� + 10�� L�� + �2 M + ������ + ����� 
⟹ −12� − �� ����� = 10�� L�� + �2 M + ������ + ����� 

⟹ � − �� = −12�����10�� J�� + �2 K + ������ + ����� 
� = �� − 12 a10�� J !& � K + ������ + �����b"	 �����                                               (48) 

Setting � = ��&	 and �� = ��  in equation (48), we have 

��&	 = �� − 12 a10�� J !& !gZ� K + ������ + �����&	�b"	 �����	                                           (49) 

��&	 = �� − 12 a������ + 10�� J !& !gZ� K + �����&	�b"	 �����                                     (50) 

Which is an implicit equation because the presence of ��&	 at both sides of the equation, hence to avoid its implicit nature 

we use the �/ + 1�hF iteration of the Broyden’s method in the right hand side. Thus we have; ��&	 = �� − 12)������ + 10���,�� + ���#��-"	����� 
with #� = �� − $%"	����� and ,� =  !&.!�  

Now replacing ������ , ���#��  and ���,��  by $���� , $�#��  and $�,��  respectively and use the same procedure as 

prescribed in [4] [5] [9], we get ��&	 = �� − 12)$���� + 12$�,�� + $�#��-"	����� 
Let $� = $���� + 10$�,�� + $�#�� ⟹ ��&	 = �� − 12$%"	�����	                                                                    (51) 
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Hence we have the following method using initial matrix $4 = @ and an initial guess �4. For a given �4 using initial matrix $4 = @, an approximated solution for ��&	 can be computed by the iterative schemes as in [20]; #� = �� − $%"	�����                                                                          (52) ��&	 = �� − 12)$���� + 10$�,�� + $�#��-"	�����                                                       (53) 

for ,� =  !&.!� , / = 0, 1, … 

Derivation of SS-1/3 Method 

Simpson quadrature rule 

� ���� ≈ J�"�� K J���� + 3� J�&�� K + ��?�K��                                                          (54) 

Simpson 1 3⁄  quadrature rule 

\ ���� ≈ L? − �6 M L���� + 4� L� + ?2 M + ��?�M�
�  

Approximating the integral in equation (3) by the average of Simpson and Simpson 1/3 (SS – 1/3) quadrature rules yields: 

� �������  ! =  " !V J������ + 3��� & !� �+�����K + J " !	� K a������ + 4�� J & !� K + �����b                   (55) 

Substituting equation (55) into (3), we have 

���� = ����� +  " !V J������ + 3��� & !� �+�����K + J " !	� K a������ + 4�� J & !� K + �����b                   (56) 

���� = 0, hence 

0 = ����� +  " !V J������ + 3��� & !� �+�����K + J " !	� K a������ + 4�� J & !� K + �����b                   (57) 

Multiplying through (57) by 
	� " ! 

0 = 	� " ! ����� + 3������ + 9�� J & !� K+3����� + a������ + 4�� J & !� K + �����b	                        (58) 

0 = 	� " ! ����� + 4������ + 13�� J & !� K+4�����	                                                      (59) 

0 = 	� " ! ����� + 4������ + 13�� J & !� K + 4�����	                                                      (60) 

"	�k� !� " ! = 4������ + 13�� J & !� K + 4�����                                                       (61) 

� − �� = "	�k� !�Vkl� !�&	<klJmgm!n K&Vkl� �	                                                                        (62) 

� = �� − 12 a4������ + 13�� J & !� K + 4�����b"	 �����                                               (63) 

Setting � = ��&	 and �� = ��  in equation (63), we have 

��&	 = �� − 12 a4������ + 13�� J !& !gZ� K + 4�����&	�b"	 �����                                     (64) 

Which is an implicit equation because the presence of ��&	 at both sides of the equation, hence to avoid its implicit nature 

we use the �/ + 1�hF iteration of the Broyden’s method in the right hand side. Thus we have; ��&	 = �� − 12)4������ + 13���,�� + 4���#��-"	�����                                            (65) 

Let $� = 4$���� + 13$�,�� + 4$�#�� ⟹ ��&	 = �� − 12$%"	�����                                                                         (66) 

Derivation of SS-3/8 Method 
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Simpson quadrature rule 

\ ���� ≈ L? − �2 M L���� + 3� L� + ?2 M + ��?�M�
�  

Simpson 3 8⁄  quadrature rule 

\ ���� ≈ L? − �8 M L���� + 3� L2� + ?3 M + 3� L� + 2?3 M + ��?�M�
�  

Approximating the integral in equation (3) by the average of Simpson and Simpson 1/3 (SS – 1/3) quadrature rules yields: 

� �������  ! =  " !V J������ + 3��� & !� �+�����K + J " !	G K a������ + 3�� J� !& < K + 3�� J !&� < K + �����b      (67) 

Substituting equation (67) into (3), we have 

���� =  " !V J������ + 3��� & !� �+�����K + J " !	G K a������ + 3�� J� !& < K + 3�� J !&� < K + �����b            (68) 

���� = 0, hence 

0 =  " !V J������ + 3��� & !� �+�����K + J " !	G K a������ + 3�� J� !& < K + 3�� J !&� < K + �����b               (69) 

Multiplying through (69) by 
	G " ! 

0 = 	G " ! ����� + 4 J������ + 3��� & !� �+�����K + a������ + 3�� J� !& < K + 3�� J !&� < K + �����b               (70) 

0 = 	G " ! ����� + 4������ + 12��� & !� �+4����� + ������ + 3�� J� !& < K + 3�� J !&� < K + �����            (71) 

"	G " ! = 4������ + 12�� J & !� K+4����� + ������ + 3�� J� !& < K + 3�� J !&� < K + �����                  (72) 

"	G " ! = 5������ + 12�� J & !� K + 3�� J� !& < K + 3�� J !&� < K + 5�����                             (73) 

� − �� = "	Gk� !�okl� !�&	�klJmgm!n K&<klJnm!gmp K&<klJm!gnmp K&okl� �	                                          (74) 

� = �� − 16 a5������ + 12�� J & !� K + 3�� J� !& < K + 3�� J !&� < K + 5�����b"	 �����                   (75) 

Setting � = ��&	 and �� = ��  in equation (75), we have 

��&	 = �� − 16 a5������ + 12�� J !gZ& !� K + 3�� J� !& !gZ< K + 3�� J !&� !gZ< K + 5�����&	�b"	 �����        (76) 

Setting �� J� !& !gZ< K ≈ �� J !&� !gZ< K ≈ �� J !& !gZ� K, equation (76) becomes 

��&	 = �� − 16 a5������ + 18�� J !& !gZ� K + 5�����&	�b"	 �����                                            (77) 

Which is an implicit equation because the presence of ��&	 at both sides of the equation, hence to avoid its implicit nature 

we use the �/ + 1�hF iteration of the Broyden’s method in the right hand side. Thus we have; ��&	 = �� − 16)5���� + 18���,�� + 5���#��-"	�����                                                 (78) 

with #� = �� − $%"	����� and ,� =  !&.!�  

Now replacing ������ , ���#��  and ���,��  by $���� , $�#��  and $�,��  respectively and use the same procedure as 

prescribed in [4, 5-9], we get ��&	 = �� − 16)5���� + 18���,�� + 5���#��-"	�����	                                          (79) 

Let $� = 5$���� + 18$�,�� + 5$�#�� 
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⟹ ��&	 = �� − 16$%"	�����                                                            (80) 

Derivation of TS-3/8 Method 

The proposal of the TS-3/8 method by the authors of an earlier publication [10], gave an idea which led to the development 

of the five new Broyden-like methods which have been described above. 

Newton’s method may be derived from the Taylor’s series expansion of the function (of a single variable) ���� about the 

point � given by 

���� = ���	� + �� − �	�����	� + 12! �� − �	�������	� + ⋯ 

where � and its first and second derivatives, ��	���	��� are calculated at �	. For multiple variable function �, from the above 

equation [20], it is obvious (as in (4)) that 

���� = ����� + \ ������� 
 !  

Suppose �∗ is a simple root of the nonlinear equation	���� = 0, where � is sufficiently differentiable. Let �: ^ ⊂ �
 → �
 

be a smooth mapping that has continuous second order partial derivatives on a convex open set ^ ⊂ �
 and that has a locally 

unique root � in ^, ���� = ��	���, �����, … , �
�����, � = ��	, ��, … , �
� and ��: �
 → � is a nonlinear function, then we have 

equation (2) above. 

Taking into consideration the two quadrature rules that is: 

Trapezoidal quadrature rule 

\ ���� ≈ L? − �2 M ����� + ��?���
�  

Simpson 3 8⁄  quadrature rule 

\ ���� ≈ L? − �8 M L���� + 3� L2� + ?3 M + 3� L� + 2?3 M + ��?�M�
�  

Approximating the integral in Equation (3) by the average of Trapezoidal and Simpson 3/8 (TS – 3/8) quadrature rules 

yields: 

� �������  ! =  " !V )������ + �����- + J " !	G K a������ + 3�� J� !& < K + 3�� J !&� < Kb + �����                   (81) 

Substituting Equation (80) into (3), we have 

���� = ����� + � − ��4 )������ + �����- + J� − ��16 K q������ + 3�� L2�� + �3 M + 3�� L�� + 2�3 Mr + ����� 
Since ���� = 0, we get 

0 = ����� +  " !V )������ + �����- + J " !	G K a������ + 3�� J� !& < K + 3�� J !&� < Kb + �����              (82) 

Multiplying through equation (81) by 
	G " !, we get 

0 = 	G " ! ����� + 4)������ + �����- + a������ + 3�� J� !& < K + 3�� J !&� < Kb + �����              (83) 

Expanding equation (82) gives 

0 = 16� − �� ����� + 4������ + 4����� + ������ + 3�� L2�� + �3 M + 3�� L�� + 2�3 M + ����� 
0 = 	G " ! ����� + 5������ + 3�� J� !& < K + 3�� J !&� < K	                                                      (84) 

⟹ −16� − �� ����� = 5������ + 3�� L2�� + �3 M + 3�� L�� + 2�3 M + 5����� 
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⟹ � − �� = −16�����5������ + 3�� J2�� + �3 K + 3�� J�� + 2�3 K + 5����� 
⟹ � = �� − 16�����5������ + 3�� J2�� + �3 K + 3�� J�� + 2�3 K + 5����� 

� = �� − 16 a5������ + 3�� J� !& < K + 3�� J !&� < K + 5�����b"	 �����	                                    (85) 

Setting � = ��&	 and �� = ��  in equation (84), we have 

��&	 = �� − 16 a5������ + 3�� J� !& !gZ< K + 3�� J !&� !gZ< K + 5�����&	�b"	 �����                       (86) 

Setting �� J� !& !gZ< K ≈ �� J !&� !gZ< K ≈ �� J !& !gZ� K, equation (85) becomes 

��&	 = �� − 16 a5������ + 3�� J !& !gZ� K + 3�� J !& !gZ� K + 5�����&	�b"	 �����                           (87) 

��&	 = �� − 16 a5������ + 6�� J !& !gZ� K + 5�����&	�b"	 �����                                       (88) 

In (86) we have an implicit equation because of the presence of ��&	 on both sides of it. To avoid its implicit nature we use 

the �/ + 1�hF iteration of the Broyden’s method on the right hand side of (87). Thus we have: 	��&	 = �� − 16)5������ + 6���,�� + 5���#��-"	�����                                            (89) 

with #� = �� − $%"	����� and ,� =  !&.!�  

Now replacing 	������ , ���#��  and ���,��  by $���� , $�#��  and $�,��  respectively and using the same procedure as 

prescribed in [4, 5-9], we get ��&	 = �� − 16)5$���� + 6$�,�� + 5$�#��-"	����� 
Let $� = 5$���� + 6$�,�� + 5$�#�� ⟹ ��&	 = �� − 16$%"	�����	                                                                            (90) 

Hence we have the following method using initial matrix $4 = @ and an initial guess �4. For a given �4 using initial matrix $4 = @, an approximated solution for ��&	 can be computed by the iterative schemes as in [20]; #� = �� − $%"	����� ��&	 = �� − 16)5$���� + 6$�,�� + 5$�#��-"	�����                                                       (91) 

where: ,� =  !&.!� , / = 0, 1, … 

4. Numerical Tests 

In order to evaluate the performance of the new methods, 

they were tested, together with four other existing methods 

(i.e. Classical Broyden Method (CB), Trapezoidal–Simpson 

Method (TS), Midpoint-Trapezoidal (MT), Trapezoidal 

Simpson Midpoint Method (TSMM) method, on four 

benchmark problems (Osinuga et al, 2018), using a set of 

seven dimensions ranging from 5 to 1065 variables. The 

results were then compared on the basis of two main 

characteristic features namely, the number of iterations (NI) 

and the Central Processing Unit (CPU) time in seconds. The 

computation was done in MATLAB R2020b with a double 

precision arithmetic on a computer with specification as 

follows; processor: AMD EI-2100APU with Radeon ™ 

Graphics 1.00GHz, Installed memory (RAM): 4.00GB and 

the system type is 64 – bit Operating System, x 64 – based 

processor. The programme was designed to terminate 

whenever the number of iterations reached 500; any failure 

of a method to satisfy these convergence criteria is denoted 

by a dash (i.e. ‘-‘) as in Table 1. 

The problems that were used for the test are: 

Problem One �s��� = �s�s&	 − 1, �
��� = �
�	 − 1, e = 1,2, … , � −1	���	�4 = �0.8, 0.8, … , 0.8�u 

Problem Two �s��� = �s�s&	 − 1, �
��� = �
�	 − 1, e = 1,2, … , � −1	���	�4 = �0.5, 0.5, … , 0.5�u 

Problem Three 
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�s��� = �s� − cos��	 − 1� , e = 1,2, … , �	���	�4= �0.5, 0.5, … , 0.5�u 

Problem Four 	�s��� = exp��s� − 1� − cos�1 − �s�� , e = 1,2, … , �	���	�4= �0.5, 0.5, … , 0.5�u 

5. Results and Discussion 

This section present results of numerical computations 

which was carried out with the aim of comparing the 

performances of the Boryden-like methods. Table 2 gives 

detailed results of four existing Broyden-like methods while 

Table 3 contains results of the newly developed methods in 

addition to the TS-3/8 method proposed in an earlier 

publication [10]. All numerical computations were carried 

out using the same bench mark problems in order to compare 

the performance of the methods. 

Results from Table 2 showed that the Classical Broyden 

method was the only one which could not satisfy the 

convergence criteria for the bench mark problem 3, all the 

other existing Broyden-like methods converged for all the 

problems adopted for this study. 

The results in Table 2 also showed that the methods 

performed differently with all the four bench mark problems 

considered in this study. In some cases such as in bench mark 

problems 1 and 2, the TS method performed extremely better 

in terms of recording the least CPU time while for problems 

3 and 4, the TSMM performed better than the other existing 

method and this can be seen in Table 3. 

In order to give clarity to how the methods were compared, 

they were all applied to solve the bench mark problems selected 

for this study, with the hope of getting the method which would 

solve a problem with the least number of iterations and CPU 

time. In a situation where methods had the same number of 

iterations, more attention was paid to the CPU time needed for 

the computation and hence a graph was constructed to give a 

clear picture of which method performed better in terms of the 

CPU time. Figures 1, 2, 3, 4, 5 and 6 gives an indication that the 

methods compared in the graph had the same number of 

iterations hence the need to have a clearer view of how well they 

performed in terms of their CPU time. 

Table 2. Comparison of Existing Broyden–like Methods. 

Problem n 

1 2 4 5 

CB TS TSMM MT 

NI CPU NI CPU NI CPU NI CPU 

1 

5 6 0.051 4 0.198 4 0.185 4 0.295 

35 6 0155 4 0.178 4 0.239 4 0.262 

65 5 0.215 4 0.188 4 0.273 4 0.232 

165 5 0.515 4 0.202 4 0.242 4 0.229 

365 5 0.515 4 0.241 4 0.238 4 0.289 

665 5 2.794 4 0.255 4 0.334 4 0.320 

1065 6 5.131 4 0.399 4 0.461 4 0.406 

2 

5 6 0.047 4 0.185 4 0.220 4 0.224 

35 6 0.164 4 0.189 4 0.235 4 0.226 

65 6 0.257 4 0.192 4 0.212 4 0.305 

165 6 1.178 4 0.197 4 0.245 4 0.314 

365 6 2.971 4 0.221 4 0.264 4 0.266 

665 6 2.934 4 0.286 4 0.314 4 0.354 

1065 6 6.884 4 0.451 4 0.396 4 0.459 

3 

5 - - 4 0.224 4 1.399 5 0.266 

35 - - 7 0.183 5 0.238 5 0.245 

65 - - 7 0.197 5 0.263 5 0.250 

165 - - 7 0.236 5 0.273 5 0.241 

365 - - 7 0.260 5 0.292 5 0.283 

665 - - 7 0.289 5 0.358 5 0.429 

1065 - - 7 0.418 5 0.484 5 0.530 

4 

5 6 0.042 4 0.259 9 0.211 6 0.183 

35 6 0.138 4 2.522 9 0.254 6 0.236 

65 6 0.388 4 8.343 9 0.226 6 0.274 

165 6 0.767 4 47.078 9 0.286 6 0.244 

365 6 2.554 4 232.026 9 0.290 6 0.268 

665 6 6.492 4 773.373 9 0.384 6 0.326 

1065 6 8.312 4 1926.21 9 0.861 6 0.582 

Table 3 gives a summary of how each of the existing 

methods performed when subjected to the bench mark 

problems. The best method is denoted first (1
st
) while the 

least performed method is denoted fourth (4
th

). 

 
Figure 1. Comparison of TS, TSMM and MT results for problem one. 
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Figure 2. Comparison of TS, TSMM and MT RESULTS for problem two. 

Table 3. Ranking of Performance of Existing Broyden-like Methods. 

Problem 
Ranking of Methods 

1st 2nd 3rd 4th 

1 TS MT TSMM CB 

2 TS TSMM MT CB 

3 TSMM MT TS CB 

4 TSMM MT CB TS 

Table 4 presents result of the newly developed Broyden-

like methods which indicates the number of iterations and 

CPU time needed to solve the given bench mark problems. 

Similar to the results presented in Table 2, it was observed 

that the MS-1/3 was the only method which could not satisfy 

the convergence critiria for one of the bench mark problems 

(i.e. Problem 4). Again, the methods performed differently 

with the different bench mark problems they were applied on, 

giving an indication that the different variant of Broyden-like 

methods may perform better on different problems./ 

Table 4. Comparison of Newly Developed Broyden-like Methods. 

Problem n 

1 2 3 4 5 6 

TS-3/8 MS-3/8 TS-1/3 MS-1/3 SS-3/8 SS-1/3 

NI CPU NI CPU NI CPU NI CPU NI CPU NI CPU 

1 

5 4 0.186 3 0.160 4 0.305 3 0.436 47 0.206 19 0.151 

35 4 0.201 3 0.211 4 0.615 3 0.452 47 0.208 19 0.273 

65 4 0.188 3 0.199 4 0.452 3 0.393 47 0.191 19 0.461 

165 4 0.209 3 0.207 4 0.335 3 0.423 47 0.366 19 0.482 

365 4 0.213 3 0.259 4 0.438 3 0.487 47 0.705 19 0.492 

665 4 0.314 3 0.277 4 0.511 3 0.681 47 1.068 19 0.878 

1065 4 0.398 3 0.361 4 0.574 3 0.531 47 2.325 19 1.624 

2 

5 4 0.220 4 0.203 5 0.319 4 0.441 48 0.222 19 0.318 

35 4 0.210 4 0.208 4 0.345 4 0.484 49 0.214 19 0.418 

65 4 0.187 4 0.121 4 0.475 4 0.484 49 0.218 19 0.432 

165 4 0.239 4 0.266 4 0.499 4 0.427 49 0.270 19 0.371 

365 4 0.244 4 0.282 4 0.345 4 0.464 49 0.389 19 0.546 

665 4 0.278 4 0.273 4 0.579 4 0.656 49 0.659 19 0.887 

1065 4 0.859 4 0.370 4 0.659 4 0.642 49 1.409 19 1.572 

3 

5 7 0.206 4 0.155 5 0.394 4 0.362 48 0.168 19 0.316 

35 7 0.208 4 0.194 5 0.401 4 0.524 48 0.237 19 0.428 

65 7 0.202 4 0.201 5 0.402 4 0.448 48 0.283 19 0.203 

165 7 0.220 4 0.218 5 0.426 4 0.337 48 0.989 19 0.448 

365 7 0.280 4 0.229 5 0.688 4 0.365 48 0.494 19 0.554 

665 7 1.238 4 0.276 5 0.562 4 0.516 48 0.851 19 1.048 

1065 7 0.659 4 0.374 5 0.855 4 0.645 48 1.800 19 1.685 

4 

5 4 0.202 1 0.203 7 1.627 - - 52 0.228 24 0.391 

35 4 2.635 1 0.193 7 0.311 - - 52 0.214 25 0.355 

65 4 8.343 1 0.228 7 0.415 - - 52 0.224 25 0.418 

165 4 51.077 1 0.198 7 0.343 - - 52 0.223 25 0.427 

365 4 227.191 1 0.231 7 0.476 - - 52 0.271 25 0.475 

665 4 759.877 1 0.247 7 0.614 - - 52 0.348 25 0.917 

1065 4 1979.338 1 0.243 7 0.725 - - 52 0.682 25 1.511 

 

Results from Table 4 have shown clearly that the MS-3/8 

method is outstanding in terms of its performance in all the 

bench mark problems considerd in this study. It is followed 

closely by the TS-3/8 method which performed well. Table 5 



90 Azure Isaac et al.:  A Comparison of Newly Developed Broyden – Like Methods for  

Solving System of Nonlinear Equations 

summaries the performance of the newly developed methods as they were applied on the bench mark problems. 

 
Figure 3. Comparison of MS-3/8 and MS-1/3 results for problem one. 

 
Figure 4. Comparison of TS-3/8, MS-3/8 and MS-1/3 results for problem two. 

 
Figure 5. Comparison of MS-3/8 and MS-1/3 results for problem three. 
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Table 5. Ranking of Performance of Newly Developed Broyden-like Methods. 

Problem 
Ranking of Methods 

1st 2nd 3rd 4th 5th 6th 

1 MS-3/8 MS-1/3 TS-3/8 TS-1/3 SS-1/3 MS-3/8 

2 MS-3/8 TS-3/8 MS-1/3 TS-1/3 SS-1/3 MS-3/8 

3 MS-3/8 MS-1/3 TS-1/3 TS-3/8 SS-1/3 MS-3/8 

4 MS-3/8 TS-3/8 TS-1/3 SS-1/3 SS-3/8 MS-1/3 

Based on the results obtained in this study summarized in Tables 2, 3, 4 and 5 using the same bench mark problems, it can 

be concluded by inspection that the five best methods from this study can be ranked as in Table 6. 

 
Figure 6. Comparison of the best five methods results for problem two. 

Table 6. Ranking of the Best Five Broyden-Like Methods. 

Indicators 
Ranking According to the Least Number of Iterations and CPU Time 

1st Method 2nd Method 3rd Method 4th Method 5th Method 

Number of Iterations MS-3/8 TS-3/8 TS MT TSMM 

CPU Time MS-3/8 TS-3/8 TS MT TSMM 

 

6. Convergence Analysis 

This section presents the convergence analysis for the best 

ranked Broyden-like method. 

Convergence of the MS–3/8 Method 

The properties of local convergence of the proposed 

methods are presented here with the following standard 

assumptions on the nonlinear function �: 

1. � is differentiable in an open convex set ^ ∈ �
 . 
2. There exist �∗ ∈ ^ ⊂ �
	such	that	���∗� =0	and	���∗�  is nonsingular and continuous for every � ∈ ^. 
3. ����� is Lipschitz continuous of order 1 so that there 

exists a positive constant � such that ‖���� − ����‖ ≤ �‖� − �‖	∀	�, � ∈ �
 

Definition 1.0 (q–super-linear convergence) [12] 

Let �� 	and	�∗ ∈ �
. Then �� → �∗ is q – superlinear if 

lim�→� ‖��&	 − �∗‖‖�� − �∗‖ = 0 

Lemma 1.1 [22] 

Let �: �
 → �
  be continuous and differentiable on an 

open convex set ^ ⊂ �
 , � ∈ ^.  If �����  is Lipzschitz 

continuous with Lipscgitz constant � , then for any �, � ∈^	‖���� − ���� − ������� − ��‖ ≤ �#��H‖� − �‖, ‖� −�‖I. Moreover, if ����� is invertible, then there exists � and � > 0  such that 
	� ‖� − �‖ ≤ ‖���� − ����‖ ≤ �‖� − �‖ 

for all �, � ∈ ^ for which �#��H‖� − �‖, ‖� − �‖I ≤ �. 

Lemma 1.2 [22] 

Let �� ∈ �
 , / ≥ 0.  If ��  converges q–super-linearly to �∗ ∈ �
, then 

	 lim�→� ‖��&	 − �∗‖‖�� − �∗‖ = 0 

Here, we present the main result which is a modified result 

[18], to prove that the local order of convergence analysis is 

super-linear. 

Theorem 1.0 

Let �: �
 → �
  satisfy the hypothesis of Lemma 1.1 on 
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the set D. Let $� be a sequence of non-singular matrices in 

the linear space ���
� of real matrices of order n. Suppose 

for some �4 the sequence �� generated by (42) remains in D 

and lim�→� �� = �∗  for each �� ≠ �∗ . Then the sequence H��I converges q–super-linearly to �∗  and ���∗� = 0 if and 

only if 

	 lim�→� � ZZ��!kl� ∗��!�‖�!‖ = 0	                  (92) 

Where c� = ��&	 − ��  and $� = 5$���� + 3$�,�� +5$�#��. 
Proof 

Given that (92) holds; it implies that (42) becomes 

0 = 116$�c� + ����� 

0 = 116$�c� + ����� − ����∗�c� + ����∗�c� 

0 = 116$�c� − ����∗�c� + ����� + ����∗�c� 

−����&	� + ����&	� = � 116$� − ����∗�� c� + ����� + ����∗�c� 

−����&	� = � 116$� − ����∗�� c� + �−����&	� + �����+ ����∗�c� 

Taking norm of both sides, we have: 

‖−����&	�‖ = �� 116$� − ����∗�� c� + �−����&	� + ����� + ����∗�c�� 

Using vector norm properties, it implies that; 

‖−����&	�‖ ≤ �� 116$� − ����∗�� c�� + ‖�−����&	� + ����� + ����∗�c�‖ 

Dividing through by ‖c�‖, we have; 

‖−����&	�‖‖c�‖ ≤ �� 116$� − ����∗�� c��‖c�‖ + ‖�−����&	� + ����� + ����∗�c�‖‖c�‖  

Using Lemma 1.1 

‖−����&	�‖ ≤ �� 116$� − ����∗�� c��‖c�‖ + �#��H‖��&	 − �∗‖, ‖�� − �∗‖I 
Since ��&	 → �∗	∀	/, then from (91), we have 

lim�→� ‖����&	�‖‖c�‖ ≤ �� 116$� − ����∗�� c��‖c�‖ + �#��H‖��&	 − �∗‖, ‖�� − �∗‖I 
���∗� = �� lim�→� ��� = lim�→������ = 0 

But ����∗) is non-singular, thus by Lemma 1.1 ∃	� > 0, /4 ≥ 0 such that we have; 

‖����&	�‖ = ‖����&	� − ���∗�‖ ≥ 1� ‖��&	 − �∗‖ 

For all / ≥ /4, we have 

0 = lim�→� ‖����&	�‖‖c�‖  

≥ lim�→� 1� ‖��&	 − �∗‖‖c�‖  

≥ lim�→� 1� ‖��&	 − �∗‖‖��&	 − �∗‖ + ‖��&	 − �∗‖ 
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= lim�→�
1� ��1 + �� 

where 

�� = ‖��&	 − �∗‖‖�� − �∗‖  

It implies that lim�→� �� = 0 

Therefore �� converges q–super-linearly to �∗. Conversely, supposed that �� converges q–super-linearly to �∗ and ���∗� =0. Then by Lemma 1.1, there exist a � > 0 such that we have ‖����&	�‖ ≤ �‖��&	 − �∗‖ 

Then 

0 = lim�→� ‖��&	 − �∗‖‖�� − �∗‖  

≥ lim�→� 1� ‖����&	�‖‖�� − �∗‖  

= lim�→� ‖����&	�‖�‖c�‖ ‖c�‖‖�� − �∗‖ 

Using Lemma 1.2, we have 

	 lim�→� ‖����&	�‖‖c�‖ = 0 

It implies that 

�� 116$� − ����∗�� c��‖c�‖ ≤ lim�→� ‖����&	�‖‖c�‖ + lim�→� ‖�−����&	� + ����� + ����∗�c�‖‖c�‖ ≤ 0 + �#��H‖��&	 − �∗‖, ‖�� − �∗‖I 
Since �� converges to �∗, then lim�→�‖�� − �∗‖ 

which proves that 

	�� 116$� − ����∗�� c��‖c�‖ = 0 

7. Conclusion 

The study has shown the processes leading to the 

development of five new Broyden – like methods namely; TS 

– 1/3, MS – 1/3, MS – 3/8, SS – 1/3 and SS – 3/8. All the 

newly proposed methods in this study, after being subjected 

to solving some bench mark problems together with selected 

existing methods, produced satisfactory results and in some 

cases, did extremely better than the existing methods. 

The data analysed in this study confirms that the MS – 3/8 

has shown a convincing prove that it is efficient and robust 

when applied to solve nonlinear system of equations, as 

compared with all the other methods considered in the study. 

Next to the MS – 3/8 method is TS – 3/8 and TS methods. 

The case where the MS – 3/8 method had the same number 

of iterations with these methods, its CPU time was lesser 

than them, making it the preferred choice of method. 

Based on the results from the study, the MS – 3/8 method 

is seen to be the most efficient among all the methods 

considered in the study. It can therefore be concluded that the 

study has efficiently developed and presented new Broyden-

like methods and have compared these new methods with 

existing ones and these two findings make up for the first two 

specific objectives of the entire research. 

Subsequent report would now employ the newly 

developed method to solving a modelled photovoltaic system 
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problem with the aim of estimating its parameters. 

8. Recommendations 

An area to consider for the application of this method 

would be apply it on a real life problem model to know if it 

would show a similar results as in the bench mark problems 

considered in this study. This might be considered in future 

studies. 

Gathering from the idea of using weighted combination of 

quadrature rules in the development of these new Broyden – 

like methods, there exist the possibility that applying this 

same procedure on other quadrature rules may yield other 

new methods. 
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