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Abstract: In this paper, a virus infection model with saturated chemotaxis is formulated and analyzed, where the chemotactic
sensitivity for chemotactic movements of the cells is described. This model contains three state variables namely the population
density of uninfected cells, the population density of infected cells and the concentration of virus particles, respectively. By virtue
of regularized approximation technique and fixed point theorem, the local solvability of the regularized system corresponding
to the original system is established. Then by extracting a suitable sequence along which the respective approximate solutions
approach a limit in convenient topologies, with addition of Gagliardo-Nirenberg interpolation inequality as well as Lp-estimate
techniques, we show that the original system describing the virus infection model exists at least one global weak solution. To
illustrate the application of our theoretical results, an optimal control problem of the epidemic system is considered, where the
admissible control domain is assumed to be a bounded closed convex subset. With the help of Aubin compactness theorem and
lower semicontinuous of the cost functional, the existence of the optimal pair is proved. Our results generalize and improve
partial previously known ones, and moreover, we first prove that the optimal control problem has at least one optimal pair.
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1. Introduction
As the virological, immunological and mathematical plates

become interlocked, mathematics is playing an increasingly
important role in biology. Many mathematicians began to
use the rigorous theory and methods of partial differential
equations to elaborate and forecast some complex biological
phenomena. Especially for the virus infection dynamic models
with diffusion terms. The vast majority of existing research
on evolution of a virus infection model was almost described
by ordinary differential equations (ODEs) [7, 18], this leads
to the ignorance of spatial variations, which means the ODEs
are not suitable for obtaining spatial information about the
distribution of infected cells. To make up for this deficiency,
spatial dependence of the virus infection dynamic models must
be taken into consideration [5].

It is well known that some epidemic diseases are awful
if no effective measures are taken to control them, such as
cholera, tuberculosis and so on. Thus, the optimal control
problems of epidemic models have been drawing more and

more notice in recent decades. For example, Kirschner et al.
studied optimal chemotherapy strategy in an early treatment
background which depicted the interaction of the immune
system with the human immunodeficiency virus (HIV) by
the optimal control theories and methods, where the immune
system is governed by ODEs [13]. Chang and Astolfi used
the drug scheduling methods to measure the states of the HIV
model on the basis of a reduced-order model framework, and
presented the corresponding simulation results [4]. Also, with
the help of optimal control methods, Xiang and Liu solved the
inverse problem of an SIS epidemic model of the ecosystem
[34, 35]. Meantime, Zhou et al. used the two control treatment,
that is, vaccination and therapy to consider the optimal control
problem of an epidemic system governed by reaction-diffusion
equations [36].

Recent modeling methods and experimental results show
that the chemotactic sensitivity is in general a tensor for
chemotactic movements of the cells [33]. In this paper,
we concern with the following virus infection model with
saturated chemotaxis:
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
ut = ∆u−∇ · (uS(x, u, v)∇v)− uw + κ− u, x ∈ Ω, t > 0,

vt = ∆v + uw − v, x ∈ Ω, t > 0,

wt = ∆w + v − w, x ∈ Ω, t > 0,

(1)

where Ω ⊂ RN (N ∈ N) is a bounded domain with smooth
boundary ∂Ω and ∂

∂ν denotes the derivative with respect to the
outer normal of ∂Ω. u, v and w denote the population density
of uninfected cells, the population density of infected cells and
the concentration of virus particles, respectively. Initial data
u0, v0, w0 are known functions satisfying

u0 ∈ C0(Ω), v0 ∈W 1,∞(Ω), w0 ∈ C0(Ω),

u0 ≥ 0, v0 ≥ 0, w0 ≥ 0.
(2)

We suppose that S ∈ C2(Ω̄× [0,∞)2;RN×N ) denoting the
rotational effect, which is induced by a swimming bias and the
bacteria themselves, has the property that there exist S0 > 0
and α > 0 fulfilling

|S(x, u, v)| ≤ S0 · (1 + u)−α

for all x ∈ Ω̄, u ≥ 0 and v ≥ 0.
(3)

Then we will consider (1) along with the initial conditions:

u(x, 0) = u0(x), v(x, 0) = v0(x),

w(x, 0) = w0(x), x ∈ Ω
(4)

and the boundary conditions:

(∇u− uS(x, u, v) · ∇v) · ν = 0,

∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0.

(5)

In fact, the dynamics of high HIV seminal loads leading to
sporadic infection are difficult to understand biologically and
completely, when they are falling outside the scope of usual
mathematical modelling of infectious diseases described by
simple ODEs. In order to better understand the formation
of patterns on the onset of an HIV infection, Stancevic et al.
proposed the following mathematical model [26]

ut = ∆u− χ∇ · (u∇v) + κ− (κ− 1)uw − u,
vt = D1∆v + α(uw − v),

wt = D2∆w + β(v − w),

(6)

where u, v and w denote the population density of
uninfected cells, the population density of infected cells
and the concentration of virus particles, respectively.
χ, κ, α, β,D1, D2 are suitable positive constants. The virus
is also produced by infected cells and its presence causes
healthy cells to be converted into infected cells. Furthermore,
healthy cells are produced with a constant rate κ. χ∇ ·
(u∇v) describes chemotactic response to cytokines emitted by
infected cells moving toward high concentration. However, the
pioneering work of the chemotaxis model was first introduced
by Keller and Segel [12], where aggregation of cellular slime

mold toward a higher concentration of a chemical signal was
described by: {

ut = ∆u−∇ · (u∇v),

vt = ∆v + u− v,
(7)

where u denotes the cell density and v is the chemical
concentration. The mathematical analysis of (7) and the
variant thereof mainly concentrated on the boundedness and
blow-up of the solutions [6, 10]. In addition to the original
model, a large number of variants of the classical form
have also been studied, including the systems with the
logistic terms [19], chemotaxis-haptotaxis models [20], multi-
species chemotaxis systems [1, 21, 24], attraction-repulsion
chemotaxis system [23, 25], chemotaxis-fluid model [14,
22, 30] and so on. During the past four decades, the
chemotaxis model has become one of the best study models
in mathematical biology. And we refer the reader to the survey
[3, 8, 9], in which we can find further examples to illustrate the
significant biological correlation of chemotaxis.

It is well known that the cross-diffusive term in (6) is the key
contributor to analyze the global existence in mathematics. In
order to exclude the possibility of blow-up, motivated by [26,
Sec. 8], Hu and Lankeit considered the following system [11]

ut = ∆u−∇ · ( u
(1+u)α∇v)− uw + κ− u,

vt = ∆v + uw − v,
wt = ∆w + v − w,

(8)

where Ω ⊂ RN , N ∈ N is a bounded domain with smooth
boundary ∂Ω and ∂

∂ν denotes the derivative with respect to the
outer normal of ∂Ω. In which, they proved that if

α > 2
3 , if N = 1,

α > 1
2 + N2

6N+4 , if 2 ≤ N ≤ 4,

α > N
4 , if N ≥ 5,

hold, then the system (8) existed a global bounded solution.
For a related system, such as HBV infection model, see also
[28, 29].

To the best of our knowledge, the optimal control problem
of virus infection models with saturated chemotaxis (1) has not
been studied. With the addition of the arguments in previous
studies [11, 16, 17, 22, 24, 30, 33], the aim of this paper is
to consider a virus infection model with saturated chemotaxis.
Under appropriate regularity assumptions on the initial data,
via Lp-estimate techniques, we show that the epidemic system
(1) exists at least one global weak solution. This result
generalizes and improves Theorem 1.1 [11]. Moreover, the
existence of the optimal pair of system (1) is obtained.
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In this paper, we use symbols Ci and ci (i = 1, 2, · · · )
as some generic positive constants which may vary from line
to line. For simplicity, u(x, t) is written as u, the integral∫

Ω
u(x)dx is written as

∫
Ω
u(x) and

∫ t
0

∫
Ω
u(x)dxdt is written

as
∫ t

0

∫
Ω
u(x).

The contents of the paper are as follows. In Section 2,
some basic definitions and main theorems as well as some
useful lemmas are presented. In Section 3, some fundamental
estimates for the solution of the system (14) are given, and the
previously mentioned a priori estimate in the process of limit
procedure is discussed and Theorem 2.1 is proved. In Section
4, the optimal control problem of the system (70) is considered
and the existence of the optimal pair is obtained.

2. Preliminaries
In order to consider the optimal control of virus infection

model with saturated chemotaxis, it is necessary to first discuss
the well-posedness of the system (1). Inspired by [33], see also
[30], the concept of the solution is presented.

Definition 2.1. Assume that S complies with (3), Φ ∈
C2([0,∞)) be a nonnegative function fulfilling Φ′ > 0
on (0,∞). Suppose that u0 ∈ L∞(Ω) is nonnegative
and that Φ(u0) ∈ L1(Ω). Furthermore, let v ∈
L2
loc([0,∞);W 1,2(Ω)) ∩ L∞loc(Ω × [0,∞)) and w ∈

L2
loc([0,∞);W 1,2(Ω)). The nonnegative measurable function

u : Ω × (0,∞) → R will be named a global weak Φ-
supersoluton of the initial boundary value problem


ut = ∆u−∇ · (uS(x, u, v)∇v)− uw + κ− u, x ∈ Ω, t > 0,
∂u
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(9)

if

Φ(u),Φ′′(u)|∇u|2,Φ′(u)uw,Φ′(u) ∈ L1
loc(Ω× [0,∞)), uΦ′′(u)∇u,Φ′(u)u ∈ L2

loc(Ω× [0,∞)),

and if for each nonnegative ϕ ∈ C∞0 (Ω× [0,∞)) with ∂ψ
∂ν = 0 on ∂Ω× (0,∞), the inequality

−
∫ ∞

0

∫
Ω

Φ(u)ϕt −
∫

Ω

Φ(u0)ϕ(·, 0) ≥
∫ ∞

0

∫
Ω

Φ(u)∆ϕ

−
∫ ∞

0

∫
Ω

Φ′′(u)|∇u|2ϕ
∫ ∞

0

−
∫ ∞

0

∫
Ω

Φ′(u)uwϕ

+

∫ ∞
0

∫
Ω

uΦ′′(u)∇u · (S(x, u, v) · ∇v)ϕ+ κ

∫ ∞
0

∫
Ω

Φ′(u)ϕ

+

∫ ∞
0

∫
Ω

uΦ′(u)(S(x, u, v) · ∇v) · ∇ϕ−
∫ ∞

0

∫
Ω

uΦ′(u)ϕ

is satisfied.
Definition 2.2. A triplet (u, v, w) of functions

u ∈ L1
loc(Ω× [0,∞)),

v ∈ L2
loc([0,∞);W 1,2(Ω)),

w ∈ L2
loc([0,∞);W 1,2(Ω)),

fulfilling u ≥ 0, v ≥ 0 and w ≥ 0 in Ω × [0,∞), uw ∈ L1
loc(Ω × [0,∞)) will be called a global weak solution of (1), (4) and

(5), if ∫
Ω

u(·, t) ≤ e−t
∫

Ω

u0 + κ|Ω|(1− e−t) for a.e. t > 0, (10)

and if the equality

−
∫ ∞

0

∫
Ω

vϕt −
∫

Ω

v0ϕ(·, 0) = −
∫ ∞

0

∫
Ω

∇v · ∇ϕ+

∫ ∞
0

∫
Ω

uwϕ−
∫ ∞

0

∫
Ω

vϕ (11)

as well as

−
∫ ∞

0

∫
Ω

wϕt −
∫

Ω

w0ϕ(·, 0) = −
∫ ∞

0

∫
Ω

∇w · ∇ϕ+

∫ ∞
0

∫
Ω

vϕ−
∫ ∞

0

∫
Ω

wϕ (12)
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hold for all ϕ ∈ L∞(Ω × (0,∞)) ∩ L2((0,∞);W 1,2(Ω))
with ϕt ∈ L2(Ω × (0,∞)), which are compactly supported
in Ω × [0,∞), and if finally there exists some nonnegative
function Φ ∈ C2([0,∞)) with Φ′ > 0 on (0,∞) such that u is
a global weak Φ-supersoluton of (9) in the sense of Definition
2.1.

Remark 2.1. Following the proof of a demonstration [33,
Lemma 2.1], together with (10), we know that if global
weak solution (u, v, w) fulfills u, v, w ≥ 0 and the regularity
properties u, v, w ∈ C0(Ω× [0,∞))∩C2,1(Ω× (0,∞)), then
(u, v, w) is also a classical solution of (1) in Ω× (0,∞).

Then, we state our main result as follows.
Theorem 2.1. Let Ω ⊂ RN (N ∈ N) be a bounded domain

with smooth boundary. Assume that S complies with (3). If
α > N+1

N+2 , then for any choice of the initial data (u0, v0, w0)
satisfy (4), system (1) admits at least one global weak solution
in the sense of Definition 2.2.

Remark 2.2. WhenN = 1, 2, Theorem 2.1 is consistent with
the results of [11, Theorem 1.1], when N ≥ 3, Theorem 2.1
generalizes and improves the results of [11, Theorem 1.1].

The proof of Theorem 2.1, we left it in Section 3.

In order to construct such weak solutions by an
approximation procedure, we fix (ρε)ε∈(0,1) ⊂ C∞0 ([0,∞))
and (χε)ε∈(0,1) ⊂ C∞([0,∞)) be cut-off functions such that

0 ≤ ρε ≤ 1 in Ω with ρε ↗ 1 in Ω as ε↘ 0,

and that

0 ≤ χε ≤ 1 in [0,∞) with χε ≡ 0 in [
1

ε
,∞)

and
χε ↗ 1 in [0,∞) as ε↘ 0.

For ε ∈ (0, 1), we then define

Sε(x, u, v) : = ρε(x) · χε(u) · S(x, u, v),

(x, u, v) ∈ Ω̄× [0,∞)2.
(13)

We will construct solutions of (1) as limits of solutions
to relevant regularized approximate problems, and give some
basic estimates for the solutions to the regularized system. For
any such ε, the regularized problems



uεt = ∆uε −∇ · (uεSε(x, uε, vε)∇vε)− uεwε + κ− uε, x ∈ Ω, t > 0,

vεt = ∆vε + uεwε − vε, x ∈ Ω, t > 0,

wεt = ∆wε + vε − wε, x ∈ Ω, t > 0,
∂uε
∂ν = ∂vε

∂ν = ∂wε
∂ν = 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), wε(x, 0) = w0(x), x ∈ Ω.

(14)

According to the well-established fixed point arguments, the
local solvability of (14) can be obtained, the proof is similar to
[10, 32], so here we omit the proof.

Lemma 2.1. Let Ω ⊂ RN , N ∈ N be a bounded domain
with smooth boundary. Assume that S complies with (3),
(u0, v0, w0) satisfy (4). Suppose that α, κ ≥ 0. Then for each
ε ∈ (0, 1), there exist Tmax ∈ (0,∞] and a classical solution
(uε, vε, wε) such that

uε ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

vε ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

wε ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)).

where Tmax denotes the maximal existence time. Moreover,
we have uε ≥ 0, vε ≥ 0 and wε ≥ 0 in Ω × (0, Tmax), and if
Tmax < +∞ , then

lim
t→Tmax

(
‖uε(·, t)‖L∞(Ω) + ‖vε(·, t)‖W 1,∞(Ω)

+‖wε(·, t)‖L∞(Ω)

)
=∞.

(15)

Then, some important and useful lemmas are presented to
prove the main theorems.

Lemma 2.2. Let Ω ⊂ RN (N ∈ N) be a bounded domain
with smooth boundary. Assume that S complies with (1.3),
(n0, c0, v0, u0) satisfy (4). Suppose that α, κ ≥ 0. Then for

each ε ∈ (0, 1),∫
Ω

uε(·, t) ≤ C1 := e−t
∫

Ω

u0

+ κ|Ω|(1− e−t)for all t ∈ (0, Tmax)

(16)

Proof. Integrating the first equation of (14) and using the
nonnegativity of uεwε, we can immediately derive (16). This
completes the proof.

Lemma 2.3. Let the assumptions in Lemma 2.2 hold. Then
for each ε ∈ (0, 1),∫

Ω

(uε(·, t) + vε(·, t)) ≤ C2 := e−t
∫

Ω

(u0 + v0)

+ κ|Ω|(1− e−t) for all t ∈ (0, Tmax).

(17)

In particular, we have∫
Ω

vε(·, t) ≤ C2 for all t ∈ (0, Tmax). (18)

Proof. The proof is similar to [11, Lemma 2.2] and [11,
Corollary 2.3], so we omit it.

Lemma 2.4. For each ε ∈ (0, 1), the solution of (14) is
global-in-time; that is, we have Tmax =∞ in Lemma 2.1.

Proof. The proof is similar to our recent work [22, Lemma
3.2], so we omit it.
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Lemma 2.5. (Gagliardo-Nirenberg interpolation inequality) ([15, Lemma 2.4]) Let 0 < θ ≤ p ≤ 2N
N−2 . There exists a positive

constant CGN such that for all uε ∈W 1,2(Ω) ∩ Lθ(Ω),

‖uε‖Lp(Ω) ≤ CGN (‖∇uε‖aL2(Ω)‖uε‖
1−a
Lθ(Ω)

+ ‖uε‖Lθ(Ω))

is valid with a =
N
θ −

N
p

1−N2 +N
θ

∈ (0, 1).

3. Proof of Theorem 2.1

3.1. A Priori Estimate

Lemma 3.1. Let Ω ⊂ RN (N ∈ N) be a bounded domain with smooth boundary. Assume that S complies with (3). If
α > N+1

N+2 , then for any choice of the initial data (u0, v0, w0) satisfy (4), there exists C > 0 such that for all ε ∈ (0, 1)∫ t+1

t

∫
Ω

|∇uαε |2 ≤C for all t ≥ 0 (19)∫ t+1

t

∫
Ω

|∇vε|2 ≤C,∫ t+1

t

∫
Ω

|∇wε|2 ≤C for all t ≥ 0 (20)∫
Ω

u2α
ε (·, t) ≤C for all t ≥ 0 (21)

and ∫
Ω

v2
ε(·, t) ≤ C,

∫
Ω

w2
ε(·, t) ≤ C for all t ≥ 0. (22)

Proof. The strong maximum principle shows that uε is positive in Ω× (0,∞). Multiplying the first equation in (14) by u2α−1
ε

and integrating by parts, using Young’s inequality and (3), we have

1

2α

d

dt

∫
Ω

u2α
ε + (2α− 1)

∫
Ω

u2α−2
ε |∇uε|2

≤ (2α− 1)

∫
Ω

u2α−1
ε ∇uε · (Sε(x, uε, vε)∇vε)−

∫
Ω

u2α
ε wε + κ

∫
Ω

u2α−1
ε −

∫
Ω

u2α
ε

≤ 2α− 1

2

∫
Ω

u2α−2
ε |∇uε|2 +

2α− 1

2

∫
Ω

u2α
ε |Sε(x, uε, vε)|2|∇vε|2 +

2α

2α− 1

∫
Ω

u2α
ε +

κ2α|Ω|
2α

−
∫

Ω

u2α
ε

≤ 2α− 1

2

∫
Ω

u2α−2
ε |∇uε|2 + c1

∫
Ω

|∇vε|2 +
1

2α− 1

∫
Ω

u2α
ε + c2

(23)

with c1 := 2α−1
2 S2

0 and c2 := κ2α|Ω|
2α . Since α > N+1

N+2 , we readily conclude that 2α
2α−1 ∈ (1, 2 + 2

N ), analogous to [11, Lemma
3.3], we obtain ∫

Ω

v
2α

2α−1
ε ≤ ε1

∫
Ω

|∇vε|2 + C1(ε1) for all t ≥ 0 (24)

for any ε1 > 0, where C1(ε1) > 0 is a constant. We test the second equation in (14) by vε and integrate by parts, we have

1

2

d

dt

∫
Ω

v2
ε +

∫
Ω

|∇vε|2 +

∫
Ω

v2
ε =

∫
Ω

uεvεwε for all t ≥ 0. (25)

By the Hölder inequality and Young’s inequality, we obtain∫
Ω

uεvεwε ≤ ‖wε‖L∞(Ω)‖uε‖L2α(Ω)‖vε‖
L

2α
2α−1 (Ω)

≤ c3
∫

Ω

u2α
ε + (2α− 1)c3

∫
Ω

v
2α

2α−1
ε

≤ c3
∫

Ω

u2α
ε + (2α− 1)c3ε1

∫
Ω

|∇vε|2 + (2α− 1)c3C1(ε1),

(26)
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where c3 > 0 is a constant. Letting ε1 = 1
(2α−1)c3

, substituting (26) into (25), we have

d

dt

∫
Ω

v2
ε +

∫
Ω

|∇vε|2 + 2

∫
Ω

v2
ε ≤ 2c3

∫
Ω

u2α
ε + c4 for all t ≥ 0. (27)

with c4 = 2(2α − 1)c3C1(ε1). Multiplying the third equation in (14) by wε and integrating by parts, using Young’s inequality,
we obtain that

d

dt

∫
Ω

w2
ε + 2

∫
Ω

|∇wε|2 +

∫
Ω

w2
ε ≤

∫
Ω

v2
ε for all t ≥ 0. (28)

Finally, taking an appropriate linear combination of above inequality with (23) and (27), we have

d

dt

{ 1

2α

∫
Ω

u2α
ε + 2c1

∫
Ω

v2
ε + c1

∫
Ω

w2
ε

}
+

2α− 1

2α2

∫
Ω

|∇uαε |2 + c1

∫
Ω

|∇vε|2

+3c1

∫
Ω

v2
ε + 2c1

∫
Ω

|∇wε|2 + c1

∫
Ω

w2
ε ≤

( 1

2α− 1
+ 4c1c3

)∫
Ω

u2α
ε + 2c1c4 + c2.

(29)

By the Gagliardo-Nirenberg inequality and Young’s inequality, there exists c5 > 0 such that( 1

2α− 1
+ 4c1c3

)∫
Ω

u2α
ε ≤

2α− 1

8α2

∫
Ω

|∇uαε |2 + c5 for all t ≥ 0. (30)

Let
y(t) :=

1

2α

∫
Ω

u2α
ε + 2c1

∫
Ω

v2
ε + c1

∫
Ω

w2
ε ,

h(t) :=
2α− 1

4α2

∫
Ω

|∇uαε |2 + c1

∫
Ω

|∇vε|2 + c1

∫
Ω

|∇wε|2,

then since 2α−1
8α2

∫
Ω
|∇uαε |2 + 3c1

∫
Ω
v2
ε + c1

∫
Ω
w2
ε ≥ y(t) for all t ≥ 0, from (29) and (30), we have

y′(t) + y(t) + h(t) ≤ c6 for all t ≥ 0 (31)

with c6 := 2c1c4 + c2 + c5, it immediately derives that

y(t) ≤ c7 := max
{ 1

2α

∫
Ω

u2α
0 + 2c1

∫
Ω

v2
0 + c1

∫
Ω

w2
0, c6

}
for all t ≥ 0. (32)

Integrating (31) with respect to time, it immediately yields (19) and (20). This completes the proof.
Lemma 3.2. Let Ω ⊂ RN (N ∈ N) be a bounded domain with smooth boundary. Assume that S complies with (3). Let T > 0,

then there exists C(T ) > 0 such that for each ε ∈ (0, 1), the solution of (14) satisfies∫ T

0

∫
Ω

|∇uε|2

(uε + 1)2
≤ C(T ). (33)

Proof. Multiplying the first equation in (14) by 1
uε+1 , we have

d

dt

∫
Ω

ln(uε + 1) = −
∫

Ω

∇uε · ∇
1

uε + 1
+

∫
Ω

∇ 1

uε + 1
· (uεSε(x, uε, vε)∇vε)

−
∫

Ω

uε
uε + 1

wε + κ

∫
Ω

1

uε + 1
−
∫

Ω

uε
uε + 1

=

∫
Ω

|∇uε|2

(uε + 1)2
−
∫

Ω

uε
(uε + 1)2

· ∇uε · (Sε(x, uε, vε)∇vε)

−
∫

Ω

uε
uε + 1

wε + κ

∫
Ω

1

uε + 1
−
∫

Ω

uε
uε + 1

(34)

for all t ≥ 0. By the Young’s inequality and (3), we obtain∣∣∣−∫
Ω

uε
(uε + 1)2

· ∇uε · (Sε(x, uε, vε)∇vε)
∣∣∣≤ 1

2

∫
Ω

|∇uε|2

(uε + 1)2
+
S2

0

2

∫
Ω

|∇vε|2. (35)
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Thus, integrating (34) with respect to time, we have∫
Ω

ln(uε(·, t) + 1)−
∫

Ω

ln(u0 + 1) ≥ 1

2

∫ t

0

∫
Ω

|∇uε|2

(uε + 1)2
− S2

0

2

∫ t

0

∫
Ω

|∇vε|2 −
∫ t

0

∫
Ω

wε(·, t)− T |Ω|. (36)

By the variation-of-constants formula with respect to wε, we obtain

wε(·, t) = et(∆−1)w(·, 0) +

∫ t

0

e(t−s)(∆−1)v(·, s)ds,

from the Neumann heat semigroup theory [31, Lemma 1.3(i)], there exists c1, c2 > 0 such that

‖wε(·, t)‖L1(Ω) ≤ c1e−t‖w0‖L1(Ω) +

∫ t

0

e−(t−s)c1‖vε(·, t)‖L1(Ω)ds ≤ c2 (37)

for all t ∈ (0, T ). Combining (36) with (37), we have

1

2

∫ T

0

∫
Ω

|∇uε|2

(uε + 1)2
≤
∫

Ω

uε(·, t) +
S2

0

2

∫ t

0

∫
Ω

|∇vε|2 + c2T + T |Ω|

for all t ∈ (0, T ), here we have been used the fact that 0 ≤ ln(uε(·, t) + 1) ≤ uε(·, t) for all uε(·, t) ≥ 0. By Lemma 3.1, the
desired result is obtained. This completes the proof.

Lemma 3.3. Let m ∈ N be such that m > N
2 . Then there exists C > 0 with the property that for each ε ∈ (0, 1), the solution

of (14) fulfills ∫ T

0

‖∂t ln(uε(·, t) + 1)‖(Wm,2
0 (Ω))∗dt ≤ C(T + 1) for all T > 0. (38)

Proof. For fixed t > 0 and arbitrary φ ∈Wm,2
0 (Ω), due to Sobolev embedding theorem, we see thatWm,2

0 (Ω) is continuously
embedded into L∞(Ω). Multiplying the first equation in (14) by 1

uε+1φ and integrating by parts, we obtain that∫
Ω

∂t ln(uε + 1) · φ =

∫
Ω

1

uε + 1
∆uε · φ−

∫
Ω

1

uε + 1
∇ · (uεSε(x, uε, vε)∇vε)φ

−
∫

Ω

uε
uε + 1

wε · φ+ κ

∫
Ω

1

uε + 1
φ−

∫
Ω

uε
uε + 1

φ

= −
∫

Ω

1

uε + 1
∇uε · ∇φ+

∫
Ω

|∇uε|2

(uε + 1)2
· φ−

∫
Ω

uε
uε + 1

wε · φ

−
∫

Ω

uε
(uε + 1)2

· ∇uε · (Sε(x, uε, vε)∇vε)φ−
∫

Ω

uε
uε + 1

φ

+

∫
Ω

uε
uε + 1

(Sε(x, uε, vε)∇vε) · ∇φ+ κ

∫
Ω

1

uε + 1
φ.

(39)

Then, by the Cauchy-Schwarz inequality, we have∣∣∣−∫
Ω

1

uε + 1
∇uε · ∇φ

∣∣∣≤ (∫
Ω

|∇uε|2

(uε + 1)2

) 1
2 ·‖∇φ‖L2(Ω), (40)

∣∣∣∫
Ω

uε
uε + 1

(Sε(x, uε, vε)∇vε) · ∇φ
∣∣∣≤ S0

(∫
Ω

|∇vε|2
) 1

2 ·‖∇φ‖L2(Ω), (41)

∣∣∣−∫
Ω

uε
(uε + 1)2

· ∇uε · (Sε(x, uε, vε)∇vε)φ
∣∣∣≤ S0

(∫
Ω

|∇uε|2

(uε + 1)2

) 1
2 ·
(∫

Ω

|∇vε|2
) 1

2 ·‖φ‖L∞(Ω), (42)

∣∣∣−∫
Ω

uε
uε + 1

wε · φ
∣∣∣≤ ‖wε‖L1(Ω) · ‖φ‖L∞(Ω), (43)

∣∣∣κ∫
Ω

1

uε + 1
φ
∣∣∣≤ κ|Ω| · ‖φ‖L∞(Ω) (44)
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as well as ∣∣∣−∫
Ω

uε
uε + 1

φ
∣∣∣≤ |Ω| · ‖φ‖L∞(Ω), (45)

∣∣∣∫
Ω

|∇uε|2

(uε + 1)2
· φ
∣∣∣≤ (∫

Ω

|∇uε|2

(uε + 1)2

)
·‖φ‖L∞(Ω). (46)

Substituting (40)-(46) into (39) and using Young’s inequality, this implies that with some c1 > 0,∣∣∣∫
Ω

∂t ln(uε + 1) · φ
∣∣∣≤ c1{1 +

∫
Ω

|∇uε|2

(uε + 1)2
+

∫
Ω

|∇vε|2 +

∫
Ω

wε

}
·‖φ‖Wm,2

0 (Ω)

for all φ ∈Wm,2
0 (Ω), meaning that

‖∂t ln(uε(·, t) + 1)‖(Wm,2
0 (Ω))∗ ≤ c1

{
1 +

∫
Ω

|∇uε|2

(uε + 1)2
+

∫
Ω

|∇vε|2 +

∫
Ω

wε

}
for all t > 0. From Lemmas 3.1 and 3.2, we readily conclude that (38) by an integration over (0, T ). This completes the proof.

Now a straightforward application of the Aubin-Lions lemma can establish the following compactness properties of (ln(uε +
1))ε∈(0,1)).

Corollary 3.1. Let T > 0. Then (ln(uε + 1))ε∈(0,1)) is relatively compact in L2((0, T );W 1,2(Ω)) with respect to the weak
topology, and relatively compact in L2(Ω× (0, T )) with respect to the strong topology.

Proof. The proof is similar to [30, Corollary 5.3] and [33, Corollary 4.3], so we omit it.
Lemma 3.4. Let T > 0. Then {vε}ε∈(0,1) is relatively compact in L2(Ω× (0, T )) with respect to the strong topology.
Proof. For fixed t > 0 and arbitrary φ ∈Wm,2

0 (Ω), due to Sobolev embedding theorem, we see that Wm,2
0 (Ω) is continuously

embedded into L∞(Ω). Then from the second equation in (14) and the Cauchy-Schwarz inequality, Poincaré inequality, for each
t ∈ (0, T ), ∣∣∣∫

Ω

vεtφ
∣∣∣ =

∣∣∣−∫
Ω

∇vε · ∇φ+

∫
Ω

uεwεφ−
∫

Ω

vεφ
∣∣∣

≤
(∫

Ω

|∇vε|2
) 1

2 ·‖∇φ‖L2(Ω) + ‖uε‖
L

6
5 (Ω)
‖wε‖L6(Ω)‖φ‖L∞(Ω)

+‖vε‖L1(Ω)‖φ‖L∞(Ω)

≤
(∫

Ω

|∇vε|2
) 1

2 ·‖∇φ‖L2(Ω) + c1‖uε‖
L

6
5 (Ω)
‖∇wε‖L2(Ω)‖φ‖L∞(Ω)

+‖vε‖L1(Ω)‖φ‖L∞(Ω)

with some certain constant c1 > 0. By the Young’s inequality, there exists c2 > 0 such that∫ T

0

‖vεt‖(Wm,2
0 (Ω))∗dt ≤ c2

∫ T

0

{
1 +

∫
Ω

|∇vε|2 +

∫
Ω

vε + ‖uε‖2
L

6
5 (Ω)

+ ‖∇wε‖2L2(Ω)

}
dt.

Hence, in accordance with Lemmas 2.3 and 3.1, we conclude that∫ T

0

‖vεt‖(Wm,2
0 (Ω))∗dt ≤ c3(T + 1)

with constant c3 > 0. Therefore, the Aubin-Lions lemma [27, Lemma 2.3] along with the boundedness of (vε)ε∈(0,1) in
L2((0, T );W 1,2(Ω)) yields the claim. This completes the proof.

Lemma 3.5. Let T > 0. Then {wε}ε∈(0,1) is relatively compact in L2(Ω× (0, T )) with respect to the strong topology.
Proof. For fixed t > 0 and arbitrary φ ∈Wm,2

0 (Ω), due to Sobolev embedding theorem, we see that Wm,2
0 (Ω) is continuously

embedded into L∞(Ω). Then from the third equation in (14) and the Cauchy-Schwarz inequality, for each t ∈ (0, T ),∣∣∣∫
Ω

wεtφ
∣∣∣ =

∣∣∣−∫
Ω

∇wε · ∇φ−
∫

Ω

wεφ+

∫
Ω

vεφ
∣∣∣

≤
(∫

Ω

|∇wε|2
) 1

2 ·‖∇φ‖L2(Ω) + ‖wε‖L1(Ω)‖φ‖L∞(Ω) + ‖vε‖L1(Ω)‖φ‖L∞(Ω).
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By the young’s inequality, there exists c1 > 0 such that∫ T

0

‖wεt‖(Wm,2
0 (Ω))∗dt ≤ c1

∫ T

0

{
1 +

∫
Ω

|∇wε|2 +

∫
Ω

vε +

∫
Ω

wε

}
dt.

Hence, in accordance with Lemmas 2.3 and 3.1, we
conclude that∫ T

0

‖wεt‖(Wm,2
0 (Ω))∗dt ≤ c2(T + 1)

with constant c2 > 0. Therefore, the Aubin-Lions lemma
[27, Lemma 2.3] along with the boundedness of (wε)ε∈(0,1)

in L2((0, T );W 1,2(Ω)) yields the claim. This completes the
proof.

3.2. Passing to the Limit

Now, we are capable of extracting a suitable sequence of
ε along which the respective solutions approach a limit in
convenient topologies.

Lemma 3.6. Let α > N+1
N+2 and assume that (u0, v0, w0)

satisfy (4). Then there exist (εj)j∈N ⊂ (0, 1) such that εj ↘ 0
as j →∞ and functions

uε → u a.e. in Ω× (0,∞), (47)

ln(uε + 1) ⇀ ln(u+ 1) in L2
loc([0,∞);W 1,2(Ω)), (48)

and

vε → v in L2
loc(Ω̄× [0,∞)), (49)

vε → v a.e. in Ω× (0,∞), (50)

∇vε ⇀ ∇v in L2
loc(Ω̄× [0,∞)), (51)

as well as

wε → w in L2
loc(Ω̄× [0,∞)), (52)

wε → w a.e. in Ω× (0,∞), (53)

∇wε ⇀ ∇w in L2
loc(Ω̄× [0,∞)), (54)

uεwε ⇀ uw in L1
loc(Ω̄× [0,∞)), (55)

with some limit functions u, v and w which are such that
u ≥ 0, v ≥ 0, w ≥ 0 a.e. in Ω× (0,∞).

Proof. Corollary 3.4 implies (47) and (48) hold, along
a subsequence (49)-(51) can be achieved through a
straightforward extraction procedure according to Lemmas 3.1
and 3.5. Similarly, (52)-(54) can be achieved in accordance
with Lemmas 3.1 and 3.6. Similar to (7.7) [33, Lemma 7.1],
(55) can be obtained. This completes the proof.

Lemma 3.7. Let α > N+1
N+2 and assume that (u0, v0, w0)

satisfy (4). Furthermore, let u, v, w denote the limit function
provided by Lemma 3.7. Then∫

Ω

u(·, t) ≤ e−t
∫

Ω

u0 +κ|Ω|(1− e−t) for a.e. t > 0, (56)

and v and w fulfill the weak solution properties of (11) and
(12), respectively.

Proof. From Lemma 2.2, we know that
∫

Ω
uε(·, t) ≤

e−t
∫

Ω
u0 + κ|Ω|(1 − e−t) for all t > 0 and each ε ∈ (0, 1),

(47) and Fatou’s lemma imply u ∈ L1
loc(Ω̄ × [0,∞)) as well

as
∫

Ω
u(·, t) ≤ e−t

∫
Ω
u0 + κ|Ω|(1 − e−t) for a.e. t > 0.

v ∈ L2
loc([0,∞);W 1,2(Ω)) and w ∈ L2

loc([0,∞);W 1,2(Ω))
are the directly consequences of (49), (51), (52) and (54).
Multiplying the second equation in (14) by ϕ, we obtain

−
∫ ∞

0

∫
Ω

vεϕt −
∫

Ω

v0ϕ(·, 0) = −
∫ ∞

0

∫
Ω

∇vε · ∇ϕ+

∫ ∞
0

∫
Ω

uεwεϕ−
∫ ∞

0

∫
Ω

vεϕ (57)

for each ε ∈ (0, 1), by (49), (51) and (55) we have

−
∫ ∞

0

∫
Ω

vεϕt → −
∫ ∞

0

∫
Ω

vϕt, −
∫ ∞

0

∫
Ω

∇vε · ∇ϕ→ −
∫ ∞

0

∫
Ω

∇v · ∇ϕ,

as well as ∫ ∞
0

∫
Ω

uεwεϕ→
∫ ∞

0

∫
Ω

uwϕ, −
∫ ∞

0

∫
Ω

vεϕ→ −
∫ ∞

0

∫
Ω

vϕ

taking ε↘ 0 in (57) yields (11). Similarly to (57), multiplying the third equation in (14) by ϕ, we have

−
∫ ∞

0

∫
Ω

wεϕt −
∫

Ω

w0ϕ(·, 0) = −
∫ ∞

0

∫
Ω

∇wε · ∇ϕ+

∫ ∞
0

∫
Ω

vεϕ−
∫ ∞

0

∫
Ω

wεϕ (58)

for each ε ∈ (0, 1), by (49), (52) and (54) we have

−
∫ ∞

0

∫
Ω

wεϕt → −
∫ ∞

0

∫
Ω

wϕt, −
∫ ∞

0

∫
Ω

∇wε · ∇ϕ→ −
∫ ∞

0

∫
Ω

∇w · ∇ϕ
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as well as ∫ ∞
0

∫
Ω

vεϕ→
∫ ∞

0

∫
Ω

vεϕ, −
∫ ∞

0

∫
Ω

wεϕ→ −
∫ ∞

0

∫
Ω

wϕ

taking ε↘ 0 in (58) yields (12). This completes the proof.
Lemma 3.8. There exists a null set Λ ⊂ (0,∞) such that the limit functions u, v, w obtained in Lemma 3.7 fulfill the inequality

1

2

∫
Ω

v2(·, T )− 1

2

∫
Ω

v2
0 +

∫ T

0

∫
Ω

|∇v|2 ≥ −
∫ T

0

∫
Ω

v2 +

∫ T

0

∫
Ω

uvw (59)

for all T ∈ (0,∞) \ Λ.
Proof. The proof similar to the recent work [22, Lemma 3.9], so we omit it.
Lemma 3.9. Let α > N+1

N+2 and assume that (u0, v0, w0) satisfy (4). Moreover, denote by (εj)j∈N and u, v, w obtained in
Lemma 3.7. Then there exist a subsequence (εjk)k∈N and a null set Λ ⊂ (0,∞) such that T ∈ (0,∞)\Λ the classical solution
(uε, vε, wε) of (14) fulfills

∇vε → ∇v in L2(Ω× (0, T )) as ε = εj ↘ 0. (60)

Proof. The proof similar to our recent works [22, Lemma 3.10] and [24, Lemma 3.11], so we omit it.
Lemma 3.10. Let α > N+1

N+2 . Suppose that (u0, v0, w0) satisfy (4) and u, v, w obtained in Lemma 3.7. Furthermore, Φ(s) :=
ln(s+ 1) for s ≥ 0. Then u is a global Φ-supersolution of (1) in the sense of Definition 2.1.

Proof. Using (48), it is readily known that Φ′(u)uw = uw
u+1 ∈ L

1
loc(Ω̄ × [0,∞)), Φ(u) ∈ L1

loc(Ω̄ × [0,∞)) and uΦ′(u) =
u
u+1 ∈ L

2
loc(Ω̄× [0,∞)). Furthermore, (48) can be insure that

Φ
′′
(u)|∇u|2 = − |∇u|

2

(u+ 1)2
= −|∇ ln(u+ 1)|2 ∈ L1

loc(Ω̄× [0,∞)),

and since

|uΦ
′′
(u)∇u| = u|∇u|

(u+ 1)2
≤ |∇ ln(u+ 1)|,

we have uΦ
′′
(u)∇u ∈ L2

loc(Ω̄× [0,∞)). We fix an arbitrary nonnegative ϕ ∈ C∞0 (Ω̄× [0,∞)) with ∂ϕ
∂ν = 0 on ∂Ω× (0,∞),

and then multiply the first equation in (14) by 1
uε+1ϕ and fix T > 0 such that ϕ ≡ 0 in Ω × (T,∞), and integrate by parts, we

obtain ∫ ∞
0

∫
Ω

|∇uε|2

(uε + 1)2
ϕ =−

∫ ∞
0

∫
Ω

ln(uε + 1)ϕt −
∫ ∞

0

∫
Ω

ln(u0 + 1)ϕ(·, 0)

+

∫ ∞
0

∫
Ω

uε
(uε + 1)2

∇uε · (Sε(x, uε, vε)∇vε) · ϕ

−
∫ ∞

0

∫
Ω

uε
uε + 1

(Sε(x, uε, vε)∇vε) · ∇ϕ

−
∫ ∞

0

∫
Ω

ln(uε + 1)∆ϕ−
∫ ∞

0

∫
Ω

uε
uε + 1

wε · ϕ

+

∫ ∞
0

∫
Ω

κ

∫
Ω

1

uε + 1
ϕ−

∫ ∞
0

∫
Ω

uε
uε + 1

ϕ

(61)

for all ε ∈ (0, 1). Using (48) we have

−
∫ ∞

0

∫
Ω

ln(uε + 1)ϕt → −
∫ ∞

0

∫
Ω

ln(u+ 1)ϕt (62)

as well as

−
∫ ∞

0

∫
Ω

ln(uε + 1)∆ϕ→ −
∫ ∞

0

∫
Ω

ln(u+ 1)4ϕ, (63)

as ε = εj ↘ 0. Moreover, by the definition of Sε and (3), we have∣∣∣ uε
uε + 1

Sε(x, uε, vε)
∣∣∣≤ S0 in Ω× (0,∞) for all ε ∈ (0, 1)

and (47) and (50) also imply
uε

uε + 1
Sε(x, uε, vε)→

u

u+ 1
S(x, u, v), (64)
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by Lemma 3.10, we have
∇vε → ∇v in L2

loc(Ω× [0,∞)) (65)

and implies that
uε

uε + 1
(Sε(x, uε, vε)∇vε)→

u

u+ 1
(S(x, u, v)∇v) in L2

loc(Ω× [0,∞)), (66)

as ε = εj ↘ 0, which directly implies

−
∫ ∞

0

∫
Ω

uε
uε + 1

(Sε(x, uε, vε)∇vε) · ∇ϕ→ −
∫ ∞

0

∫
Ω

u

u+ 1
(S(x, u, v)∇v) · ∇ϕ (67)

as ε = εj ↘ 0. Furthermore, combining with (48) and (66), we have∫ ∞
0

∫
Ω

uε
(uε + 1)2

∇uε · (Sε(x, uε, vε)∇vε)ϕ

=

∫ ∞
0

∫
Ω

∇ ln(uε + 1) ·
( uε
uε + 1

Sε(x, uε, vε)∇vε
)
·ϕ→

∫ ∞
0

∫
Ω

∇ ln(u+ 1) ·
( u

u+ 1
S(x, u, v)∇v

)
·ϕ

=

∫ ∞
0

∫
Ω

u

(u+ 1)2
∇u · (S(x, u, v)∇v) · ϕ

(68)

Combining with (62), (63), (67) and (68), we infer from (61) that∫ ∞
0

∫
Ω

|∇u|2

(u+ 1)2
ϕ ≤ lim inf

ε=εj↘0

∫ ∞
0

∫
Ω

|∇uε|2

(uε + 1)2
ϕ

= −
∫ ∞

0

∫
Ω

ln(u+ 1)ϕt −
∫ ∞

0

∫
Ω

ln(u0 + 1)ϕ(·, 0)

+

∫ ∞
0

∫
Ω

u

(u+ 1)2
∇u · (S(x, u, v)∇v) · ϕ

−
∫ ∞

0

∫
Ω

u

u+ 1
(S(x, u, v)∇v) · ∇ϕ

−
∫ ∞

0

∫
Ω

ln(u+ 1)∆ϕ−
∫ ∞

0

∫
Ω

u

u+ 1
w · ϕ

+

∫ ∞
0

∫
Ω

κ

∫
Ω

1

u+ 1
ϕ−

∫ ∞
0

∫
Ω

u

u+ 1
ϕ,

(69)

which means that u is a global weak Φ-supersoluton of (9).
Finally, we prove the main theorem.
The proof of Theorem 2.1 Combining with Lemma 3.8 and 3.11, the desired result is obtained.

4. Application to Optimal Control

In this section, to apply the existence results to prove the existence of the optimal control pair, we rewrite system (1), (4) and
(5) into the following form and give the discussion of optimal control problem.

We are concerned with optimal control problem

Min
1

2

∫ T

0

∫
Ω

|B(p(t, x)− p0(t, x))|2dxdt+

∫ T

0

h(U(t))dt (P ) (70)

subject to {
p′(t) +Ap(t) +B(p(t)) = U(t) + f0(t) in Ω× (0, T ),

p(0) = p0 in Ω,
(71)

with state constraint
p(t) ∈ K ∀t ∈ [0, T ],
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where K is a close convex subset in

H = {p, p ∈ (L2(0, T ;W))3,
∂p

∂ν
= 0 on ∂Ω}.

Here Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, T > 0 is a given constant, W is a Hilbert space, and
f0(t) ∈ L2(0, T ; (L2(Ω))3). The function h :W → (−∞,+∞] is convex and lower semicontinuous function. Moreover, there
exist α > 0 and C ∈ R such that

h(U) ≥ α|U |2W + C, ∀ p ∈ W. (72)

p0 ∈ L2(0, T ;H) and B ∈ L(V,H), where V = (H1
0 (Ω))3 ∩ H, here B := l1I . Denote by the symbol ‖ · ‖ the norm of the

space V , which is defined by

‖p‖2 =

3∑
i=1

∫
Ω

|∇pi|2

and by the symbol | · | the norm of R3 and (L2(Ω))3. We endow the spaceH with the norm of (L2(Ω))3, and presented by 〈·, ·〉
the scalar product of H, 〈·, ·〉(V,V′) the paring between V and its dual V ′ with the norm ‖ · ‖V′ . Let A ∈ L(V,V ′) and trilinear
function be defined by:

〈Ap, y〉 =

3∑
i=1

∫
Ω

∇pi · ∇yi, ∀p, y ∈ V

and

b(p, y, z) =

3∑
i=1

∫
Ω

piDiyjDizj

respectively, where Di = ∂
∂xi

, D(A) = (H2(Ω))3 ∩ V . If there is no confuse, we present also by 〈·, ·〉 the dual product between
V and its dual V ′. We define the operators B : V → V ′ by

〈B(p), y〉 = b(p, p, y) ∀y ∈ V.

Let f(t) = Pf0(t) and D ∈ L(W,H) is given by D = PI , where I ∈ L(W; (L2(Ω))3) is a unit matrix, P : (L2(Ω))3 → H
is the projection onH. Then we may rewrite the optimal control problem (P ) as

Min
1

2

∫ T

0

|B(p(t)− p0(t))|2dxdt+

∫ T

0

h(U(t))dt (P ) (73)

subject to {
p′(t) +Ap(t) +B(p(t)) = DU(t) + f(t) in Ω× (0, T ),

p(0) = p0 in Ω,
(74)

with state constraint
p(t) ∈ K ∀t ∈ [0, T ],

where

A =

 −∆ 0 0
0 −∆ 0
0 0 −∆

 ,

U(t) = (0, 0, λ(t, x))T , p(t) = (u, v, w)T , B(p(t)) = ∇ · ( u
(1+u)α∇v), f(t) = (f1(t), f2(t), f3(t))T with

f1(t) = −uw + κ− u,
f2(t) = uw − v,
f3(t) = v − w,

f,DU ∈ L2(0, T ;H). Let U = L2(0, T ;W) and

Uad =
{ 0

0
λ

 ∈ U ; λ ∈ L2(0, T ;W), λ ≥ 0, ‖Dλ‖L2(0,T ;W) ≤ C
}
,
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where λ(t, x) denote control variable. We assume Uad is a closed, bounded, and convex subset of U .
Then, we have the following existence theorem.
Lemma 4.1. The optimal control problem (P ) has at least one optimal pair (p̄, Ū).
Proof. We denote

J(p, U) =
1

2

∫ T

0

|B(p(t)− p0(t))|2dxdt+

∫ T

0

h(U(t))dt,

γ = inf
{1

2

∫ T

0

|B(p(t)− p0(t))|2dxdt+

∫ T

0

h(U(t))dt; (p, U) ∈ Fw
}
.

Then there exist (pn, Un) ∈ Fw such that

γ ≤ J(pn, Un) ≤ γ +
1

N
. (75)

By (72) and (75), it follow that {Un} is bounded in L2(0, T ;W). Thus, there exists at least one subsequence which denoted
again by {Un}, such that

Un ⇀ Ū in L2(0, T ;W). (76)

Multiplying equation {
p′n(t) +Apn(t) +B(pn(t)) = DUn(t) + f(t) in Ω× (0, T ),

p(0) = p0 in Ω,
(77)

by pn, integrating on (0, t), we obtain that

|pn(t)|2 +

∫ t

0

‖pn‖2ds ≤ c1 + c2

∫ t

0

|pn(s)|2ds,

by Gronwall’s inequality, we have

|pn(s)|2 +

∫ T

0

‖pn‖2dt ≤ C. (78)

This yields that

pn → p̄ weakly∗ in L∞(0, T ;H), (79)

pn ⇀ p̄ in L2(0, T ;V), (80)

Apn ⇀ Ap̄ in L2(0, T ;V ′). (81)

By the properties of the trilinear function b, we derive that

|〈Bpn, y〉(V′,V)| ≤ c3|pn|
1
2 ‖pn‖

3
2

L1(Ω)‖y‖

and it follows that∫ T

0

|Bpn|
4
3

V′dt ≤ c4
∫ T

0

‖y‖2dt ≤ c5. (82)

Therefore, ∫ T

0

|dpn
dt
|
4
3

V′dt ≤ c6, (83)

from (82) and (83), we have

dpn
dt

⇀
dp̄

dt
in L

4
3 (0, T ;V ′), (84)

Bpn ⇀ ϑ in L
4
3 (0, T ;V ′). (85)

To reveal that (p̄, Ū) fulfills (75), it remains to prove that
ϑ = Bp̄ a.e. in (0, T ). By (79)-(81), (83) and Aubin’s

compactness theorem [2, Theorem 1.20], we have

p̄n → p̄ strongly in L2(0, T ;H), (86)

and∫ T

0

|〈Bpn −Bp̄, ϕ〉(V ′,V )| ≤
∫ T

0

(|b(pn − p̄, pn, ϕ)|

+ |b(p̄, pn − p̄ϕ)|)dt→ 0

(87)

as n → ∞, ∀ϕ ∈ L2(0, T ;C∞0 (Ω)). Thus, δ(t) = B(p̄(t))
a.e. in (0, T ). Since h is convex and lower semicontinuous,
we obtain that

γ ≤ J(p̄, Ū) ≤ lim inf
n→∞

J(pn, Un) ≤ γ, (88)

we also have that for each t ∈ [0, T ], ∃tn ∈ (0, T ) such that
p̄(tn) ∈ K, and

p̄(tn) ⇀ p̄(t) inH.

Since K is close convex subset of H, it is weakly closed, it
is follows that p̄(t) ∈ K, ∀t ∈ [0, T ]. Therefore, (p̄, Ū) is an
optimal pair for problem (P ). This completes the proof.

5. Conclusions
In this paper, we mainly investigate a virus infection model

with saturated chemotaxis. Our result in Theorem 1, as
N = 1, 2, which is consistent with the result Theorem 1.1
[27], as N ≥ 3, Theorem 1 generalizes and improves the
result Theorem 1.1 [27]. And moreover we first prove that
the optimal control problem (P ) has at least one optimal pair
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(p̄, Ū).
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