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Abstract: In this paper, a non-linear mathematical model for the dynamics of Ebola virus diseases is formulated and analysed. 

The model has five classes namely susceptible human, exposed human, infected human, treated human and recovered human. 

Invariant region and positivity solution of the model are determined. Local stability analyses of disease free Equilibrium and 

endemic equilibrium are examined. The disease free equilibrium analysis is determined using Routh-Hurwitz criteria, whereby it 

is found to be locally stable if the reproduction number is less than one. Two control measures: control measure due to quarantine 

of exposed and susceptible individuals and control measure due to efficacy of treatment drug, used for treating Ebola virus 

disease Ebola victim are incorporated to the Ebola virus disease model. The control problem is then analysed in order to 

determine the optimal control. Numerical simulations for the model in the presence of control measures are finally performed. 

The results show that in the presence of optimal control, the Ebola virus disease can be eliminated in the Society. Furthermore, to 

minimize infections of Ebola virus disease, quarantine centres with skilled manpower must be prepared in advance so as to 

accommodate the significant number of exposed and susceptible individuals, in order to avoid further transmission in other areas 

out of quarantine centres. Also tracing of exposed and infected individuals must be efficiently done in order to quarantine the 

affected population and educate people on the transmission of the disease, symptoms and prevention measures in order to 

minimize human to human transmissions. Investing more on researches on new drugs which are effective in treating the Ebola 

virus disease victim is inevitable. 
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1. Introduction 

Ebola Virus Disease (formerly known as Ebola 

haemorrhagic fever) is a severe often fatal illness in humans. 

Ebola is a disease with haemorrhage bleedings. It usually 

affects human and non-human primates. Non-human primates 

include Monkeys, Gorillas and Chimpanzees [1]. Ebola virus 

comprises of five distinct species: Bundibugyo Ebolavirus 

(BDBV), Zaire Ebolavirus (EBOV), Reston Ebolavirus 

(RESTV), Sudan Ebolavirus (SUDV) and Tai Ebolavirus 

(TAFV) [2]. 

Ebola is characterized by flu like symptoms which rapidly 

progress to vomiting, diarrhoea, rash, internal and external 

bleeding [3]. Ebola is introduced into human population 

through close contact with the blood, secretions, organs or 

other bodily fluids of infected animals. In Africa, infection has 

been spreading through the handling of infected chimpanzees, 

Gorillas, Fruitbats, Monkeys, Forest antelopes and porcupines 

found ill or dead in the Rain Forest. Ebola then spreads in the 

community through human to human transmission with 

infection resulting from direct contact (through scratched skin 
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or muscular membrane). Burial ceremonies in which 

mourners have direct contact with the body of the deceased 

can also play a role in Transmission of Ebola [4]. An 

incubation period, a time interval from infection with virus to 

onset of symptoms is 2 to 21 days [1]. 

Supportive car-rehydration with oral intravenous fluids and 

treatment of specific symptoms improve survival from Ebola 

virus disease [1] The treatment of Ebola hemorrhagic fever 

infected patient consists mainly of palliative treatment and 

treatment to avoid cardiovascular collapse and renal 

insufficiency [5]. Immediate quarantine, treatment and 

management by the hospital can halt the spread of the outbreak 

if one is quick to act on a person who has been in contact with 

Ebola patient, or patient suspected of Ebola fever [6]. 

In dynamical systems, optimal control is the process of 

determining control and state trajectories of dynamical system; 

over a period of time in order to maximize a given 

performance index [7]. Optimal Control Theory is applied to 

suggest the most effective mitigation theory to minimize 

number of individuals who become infected in the course of 

an infection while balancing vaccination and treatment 

applied to the models with various cost scenarios [8]. The 

control problem in dynamical systems is in the form of 

( ) ( , ( ), ( ))x t g t x t u t=ɺ  where by, timet = , ( )u t = the control 

variable and ( )x t =  state variable. The control is measurable 

with 0 ( ) 1u t≤ ≤ . Both control and the state usually affect the 

goal which is called objective function [9]. 

The basic optimal control problems involves a cost 

functional or performance criterion say ( )J u . which is of the 

form, 

0
( ) ( , , ) ( )

T

J u f t x u dt T= + Φ∫  

subject to the above differential equations and initial 

conditions. Such a minimizing control is called an optimal 

control problem. f  is a given real valued function and Φ  is 

a continuous real-valued function. In the minimization case, 

the goal is to find an optimal control u∗  such that, 

( ) ( )
u

J u Min J u∗ = . 

The principle technique for such an optimal control problem is 

to solve a set of “necessary conditions” that an optimal control 

and corresponding state variables must satisfy [10]. The 

necessary conditions is generated from the Hamiltonian H , 

which is defined as  

( , ( ), ( )) ( , ( ), ( ))H f t u t x t g t u t x tλ= + . 

Subject to ( ) ( )( ), ,i
i

dg
q g t u t t

dt
=  

where λ is an adjoint function [9]. 

The necessary conditions for maximizing/minimizing H  

with respect to u  at *u  are,
 

*

0,  0u u

u u

H
f g

u
λ

=

∂ = → + =
∂

 

0 ( )x x

H
f g

x
λ λ λ∂′ ′= − = → = − +

∂
 

and 

( ) 0Tλ =  [9]. 

It is then intended to optimise the quarantine of exposed and 

infected individuals and to optimise the efficacy of drug used 

for treating Ebola virus disease victim in order to minimize the 

infections of Ebola virus disease. 

2. Model Formulation 

Chowell et al. developed a Mathematical model to 

investigate the epidemics of Ebola, the basic reproduction 

number of Ebola and the effects of public measures, using the 

cases of Congo and Uganda [11]. 

DiekMann et al. conducted a study on mathematical 

modelling, simulation and optimal control of the 2014 Ebola 

outbreak in West Africa, whereby they introduced the control 

on vaccination rate of Ebola [12]. 

In this paper, a Mathematical model for Ebola Virus 

Disease in the presence of treatment and quarantine of 

infectives will be formulated and analysed. It is intended to 

extend the mathematical model by Chowell et al. who 

established a simple SEIR-model to elaborate the dynamics of 

Ebola virus disease [11]. The process will include recruitment 

rate of susceptible population, disease transmission rate by 

exposed population to susceptible population, natural death 

rate in each class, death due to the disease and possibility of 

the recovered population to be susceptible again. All these 

inputs are significant in transmission of Ebola virus disease. In 

modelling the dynamics of the disease, the population is 

divided into five subclasses namely, ( )S t : The Susceptible 

human, the number of people who are not yet affected by 

Ebola Virus Disease, ( )E t : The Exposed Human beings, the 

number of individuals who are affected by Ebola Virus 

Disease but not yet infectious, ( )I t : The Infected, number of 

individuals who are affected with Ebola Virus Disease who 

can spread that disease to the susceptible population, ( )T t : 

The number of people who are subjected to treatment 

procedure at time t  and ( ) :R t The number of people who 

have recovered from Ebola Virus Disease. 

Ebola virus disease is transmitted from the exposed 

population and infected population at the rates of 1β  and 2β  

respectively. Therefore, the susceptible population is recruited 

at the exposed class at the rate of 1 2E B Iβ + . The exposed 

group gets infected and joins the infectious group at the rate of

δ , infectious joins the treated group at the rate of γ
 

whereby m  proportion of infectious group die due to Ebola 

virus disease, treated individuals get recovered at the rate of 

b , recovered population joins the susceptible class at rate of 
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a . Natural death rate is constant ( µ ) in each of the five 

classes.  

In formulating the model, the following assumptions are 

taken into consideration:- 

Recruitment rate of susceptible humans is constant, 

The Ebola virus disease patient cannot get immunity after 

recovering from the disease, 

Ebola virus disease infection is proportional to the number 

of infectives, 

All people affected by virus disease pass through the same 

disease process, 

Ebola virus disease infection is possible through Human to 

Human only. 

With S  the susceptible humans, E  the exposed human to 

Ebola virus, I  the infected human, T  the treatment group, 

R  the recovered group, Q  the recruitment rate of 

susceptible human, 1β  the disease transmission rate to 

susceptible human by exposed human, 2β  the disease 

transmission rate to the susceptible human by the infected 

human, a  the rate of progression to susceptible group from 

recovered group, µ  the human natural death rate, b  the rate 

of progression of treated group to recovered group, γ  the 

rate of progression of infected to treated group, δ , the rate of 

progression of exposed group to infected group, m  the death 

rate due to Ebola virus disease and taking into account the 

above considerations and assumptions, we have the following 

schematic flow diagram: 

 

Figure 1. Compartmental representation of the model. 

From the above flow diagram, the dynamics of the disease 

is governed by the following system of nonlinear ordinary 

differential equations: 

1 2( )
dS

Q E I S aR S
dt

β β µ= − + + −  

1 2( ) ( )
dE

E I S E
dt

β β δ µ= + − +  

( )
dI

E m I
dt

δ γ µ= − + +                  (1) 

dT
I bT T

dt
γ µ= − −  

( )
dR

bT a R
dt

µ= − +  

where 0(0) 0S S= ≥ , 0(0) 0E E= ≥ , 0(0) 0I I= ≥ , 

0(0) 0T T= ≥  and 0(0) 0R R= ≥ are the initial conditions of 

the above model. 

3. Model Analysis 

The model system (1) will be analysed qualitatively to get 

insight to its dynamical features which give a better 

understanding of Ebola virus disease in the presence of 

treatment and quarantine of infectives. Threshold which 

governs elimination or persistence of Ebola virus disease in 

the presence of treatment and quarantine of infectives will be 

determined and analysed. 

3.1. Invariant Region 

Since the model (1) is Ebola model dealing with human 

population, we assume that all state variables and parameters 

of the model are positive. The model (1) will then be analysed 

in suitable feasible region where all state variables are positive. 

This region will be obtained by considering the following 

lemma:- 

Lemma 1: The feasible region Ω , contains the solution set 

( ) 5, , , ,S E I T R ∈ℝ . 

Proof: 

If N  is the total population size, then 

N S E I T R= + + + +             (2) 

It follows that, 

dN dS dE dI dT dR

dt dt dt dt dt dt
= + + + +  

( )
dN

Q N mI
dt

µ= − −  

dN
Q N

dt
µ≤ −  

( (0))
( )

tQ Q N e
N t

µµ
µ

−− −≤  

As t → ∞ , ( )
Q

N t
µ

≤  

Since ( )
Q

N t
µ

≤ , then the basic Mathematical model is 

well posed and it is mathematically relevant, therefore it is 

sufficient to study the dynamics of the epidemiological system 

(1) in the region Ω . 

3.2. Positivity of the Solution 

Lemma 2: If the initial Solution of a dynamical model (1) is 
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{ } 1
( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0

2
S t E t I t T t R t≥ ≥ ≥ ≥ ≥ ∈ Ω , then the 

solution set of dynamical model (1) is positive for all 0t ≥ . 

Proof: 

Consider 
ds

dt
 in the system (1): 

1 2( )
dS

Q E I S aR S
dt

β β µ= − + + −  

Then 

dS
S

dt
µ≥ −                  (3) 

The inequality (3) has a solution  

tS e µ−≥  

As 

t → ∞ , 0S ≥ . 

Similarly using the other equations of system (1), positivity 

of solutions can be established. Hence, all the solutions of the 

system (1) are positive for all 0t > . 

3.3. Disease free Equilibrium Point 

The Equilibrium point of the system (1) can be established 

by setting 0
dS dE dI dT dR

dt dt dt dt dt
= = = = = . 

Then  

* * * * *
1 2( ) 0Q E I S aR Sβ β µ− + + − =  

* * * *
1 2( ) ( ) 0E I S Eβ β δ µ+ − + =  

* *( ) 0E m Iδ γ µ− + + =         (4) 

* * * 0I bT Tγ µ− − =  

* *( ) 0bT a Rµ− + =  

When there is no disease, the disease free equilibrium point 

can be established by setting 0I =  in the system (4) 

followed by solving the resulting system of simultaneous 

equations to get ( )0E , , , ,0,0,0,0
Q

E I T R
µ

 
= =  

 
. Thus the 

disease free equilibrium point is given by 

0E ,0,0,0,0 .
Q

µ
 

=  
 

               (5) 

3.4. The Basic Reproduction Number 

The basic reproduction number 0R , defined as the number 

of Secondary cases which one case would produce in a 

completely susceptible population [12]. 

Next generation matrix method is the natural basis for the 

definition and calculation of 0R , Where finitely many 

different categories of individuals are recognized [12] 0R
 
is 

the spectral radius of the next generation Matrix [16]. Next 

generation matrix ( G ) is given by: 

1G FV−=                  (6) 

where 0( )
F i

j

F E

x

∂
=

∂
, 0( )

V i

j

V E

x

∂
=

∂
 and 0E  is the disease 

free equilibrium point. 

iF  is the rate at which new infections appears at 

compartment i  and iV  is the removal of individuals among 

different classes. Also i i iV V V− += − whereby iV +  is rate of 

movement of individuals into the compartment i  and iV −  is 

rate of movement of individuals out of compartment i . 

Considering the equation (6), 

Since, 

( )1 2
F

0
i

E I Sβ β +
=   
 

, 

then, 

 

1 1

0

2 2

( )
F .i

j

F F

F E E I

F Fx

E I

∂ ∂ 
 ∂ ∂ ∂ = =

∂ ∂∂  
 ∂ ∂ 

           (7) 

This can be rewritten as 

1 2
F

0 0

S Sβ β 
=  
 

                (8) 

If Vi is the movement of individuals out of each 

compartment ,i  then 

( )
V

( )
i

E

m I E

δ µ
γ µ δ

+ 
=  + + − 

 

Let V  be the Jacobian of Vi . Then 

1 2

0

1 2

( ) 0( )
V

(

i

j

V V

V E E I

V V mX

E I

δ µ
δ γ µ

∂ ∂ 
  + ∂ ∂ ∂ = = =  ∂ ∂ − + +∂    
 ∂ ∂ 

 (9) 

Consequently 

1

1
0

V
1

( )( ) ( )m m

δ µ
δ

γ µ δ µ γ µ

−

 
 + =
 
 + + + + + 

    (10) 
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Then 

1 2 2
1 ( ) ( )( ) ( )G FV

0 0

Q Q Q

m m

β δβ β
µ δ µ µ γ µ δ µ µ γ µ−

 + + + + + + += =  
 
 

 

The eigenvalues of G  are given by  

1 20,  
( ) ( )( )

Q Q

m

β δβ
µ δ µ µ γ µ δ µ

 
+ + + + + 

. 

Therefore 

0R = ( ) ( )( )
1 2Q Q

m

β δβ
µ δ µ µ γ µ δ µ

+
+ + + +  

or 

( )
( )( )

1 2
0

( )Q m
R

m

γ µ β δβ
µ γ µ δ µ

+ + +
=

+ + +
          (11) 

3.5. Local Stability Analysis of the Disease Free Equilibrium 

Theorem 1: The disease free equilibrium point is locally 

asymptotic stable if the basic reproduction number is less than 

one and unstable if the basic reproduction number is greater 

than one ( )0 1R >  [13].

 In epidemiological point of view, it means that the spread of 

Ebola virus disease can be eradicated whenever the 

reproduction number is less than one ( )0 1R < . 

In order to determine the stability of the disease free 

equilibrium point, it is necessary to linearize the system of 

differential equation (1), so as to find an approximation of the 

system at the disease free equilibrium point. 

We write the system as 

( )1 1 2g Q E I S aR Sβ β µ= − + + −  

2 1 2( ) ( )g E I S Eβ β δ µ= + − +  

3 ( )g E m Iδ γ µ= − + +                 (12) 

4g I bT Tγ µ= − −  

5 ( )g bT a Rµ= − +  

The Jacobian Matrix of the system (12) is 

( )
( )

( )

1 2 1 2

1 2 1 2

( ) 0

( ) 0 0

0 0 0J

0 0 0

0 0 0

E I S S a

E I S S

m

b

b a

β β µ β β
β β β δ µ β

δ γ µ
γ µ

µ

− + − − − 
 + − + 
 − + +=
 

− − 
 − + 

  (13) 

At the disease free equilibrium point , 0, 0,0,0 ,
Q

µ
 
 
 

 the 

system (13) becomes 

( )

( )

( )

1 2

1 2

0

0 0 0
J

0 0 0

0 0 0

0 0 0

Q Q
a

Q Q

m

b

b a

β βµ
µ µ

β βδ µ
µ µ

δ γ µ
γ µ

µ

− − − 
 
 

− + 
=  
 − + +
 

− − 
 − + 

 

If λ is an eigenvalue of the Jacobian matrix J , then the 

characteristic equation of Matrix J is 

( ) ( ) ( ) ( ) ( )( ) ( )( )( )1 2( ) 0f a b m Q mλ λ µ λ µ λ µ µ µ γ λ δ λ µ µ γ λ β δβ= + + + − − − + + + + + − + + + + =     (14) 

Theorem 2: The disease free equilibrium is locally asymptotic 

stable if the eigenvalues of the Jacobian matrix has negative 

real parts [14]. 

The first three eigenvalues are: 

1 0λ µ= − < , 2 0aλ µ= − − <  

and  

3 0.bλ µ= − − <                (15) 

Since the first three eigenvalues have negative real parts, 

Routh-hurwitz criteria will be used in the fourth factor, as 

follows: 

( )( ) ( )( )( )1 2 0m Q mµ µ γ λ δ λ µ µ µ γ λ β δβ+ + + + + − + + + + =  (16) 

Equation (16) can be written as 

2 0A Bλ λ+ + = , 

where, 

( ) ( )A m Qµ µ γ µ δ µ= + + + + −  

and 

( )( ) ( )1 2( )B m Q mµ µ γ δ µ µ µ γ β δβ= + + + − + + +  

0A >  if ( ) ( )m Qµ µ γ µδ µ δ µ+ + + + + >  (17) 

0B >  if 

( )( ) ( )( )1 2m Q mµ µ γ δ µ µ µ γ β δβ+ + + > − + + +  (18) 

or 

( )( )
( )( )

1 2)
1.

Q m

m

µ µ γ β δβ
µ µ γ δ µ

+ + +
<

+ + +
     (19) 
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But 
( )( )
( )( )

1 2

0

)Q m
R

m

µ µ γ β δβ
µ µ γ δ µ

+ + +
=

+ + +
. 

Hence  

0 1R < .                   (20) 

Therefore 0 1R <  if 0B >  and 0A > . Then by 

Routh-Hurwitz criteria the disease free equilibrium of the 

system (1) is locally asymptotically stable. 

3.5.1. Existence of Endemic Equilibrium 

Lemma 3: There exists a positive endemic equilibrium 

point if and only if 0 1R > . 

Proof: 

Endemic equilibrium point for the system (1) can be 

determined by setting, 0
dS dE dI dT dR

dt dt dt dt dt
= = = = = , if

0I ≠ . 

This gives the endemic equilibrium point * * * * *( , , , , )S E I T R  

as 

*

0

Q
S

Rµ
=

 

( )
* 0

0

( )( 1)( )( )

( )( )( )( )

Q m R a b
E

R m a b ab

γ µ µ µ
δ µ γ µ µ µ δγ

+ + − + +
=

+ + + + + −
 

( )
* 0

0

( 1) ( )( )

( )( )( )( )

Q R a b
I

R m a b ab

δ µ µ
δ µ γ µ µ µ δγ

− + +
=

+ + + + + −
 

( )
* 0

0

( 1) ( )

( )( )( )( )

Q R a
T

R m a b ab

γ δ µ
δ µ γ µ µ µ δγ

− +
=

+ + + + + −
 

( )
* 0

0

( 1)

( )( )( )( )

R Qb
R

R m a b ab

γδ
δ µ γ µ µ µ δγ

−
=

+ + + + + −
. 

Therefore there is only one positive endemic equilibrium point, 

which exists for 0 1.R >  

For *I : 

( )
*

2
0 0

( )( )

( )( )( )( )

dI Q a b

dR R m a b ab

δ µ µ
δ µ γ µ µ µ δγ

+ +=
+ + + + + −

  (21) 

Therefore 
*

0

0
dI

dR
> . This implies that 0 1R >  increases the 

value of positive *I and at 0 1R = , * 0I = . 

3.5.2. Global Stability Analysis of Endemic Equilibrium 

Lemma 4: The endemic equilibrium of the mathematical 

model (1) is globally asymptotically stable if 0 1R >  and 

unstable if 0 1R ≤ . 

Proof: 

Using the constructed Lyapunov function as suggested by 

[15], the global stability of Endemic equilibrium can be 

established by defining the Lyapunov function as 

*
( *, *, *, *, *) * *

S
L S E I T R S S S Log

S

 = − − 
 

 

*
* *

E
E E E Log

E

 + − − 
 

 

*
* *

I
I I I Log

I

 + − − 
 

*
* *

T
T T T Log

T

 + − − 
 

 

*
* * .

R
R R R Log

R

 + − − 
 

 

It can be shown that 

dL
X Y

dt
= −  

where 

2 2

1 2

( *) ( *) *
* * * *

S S S S S
X Q E I aR aR

S S S
β β− −= + + + +

2

1

( *)
*

E E
S

E
β −+ 2 2

* *E S
IS I

E
β β+ +

2

* *
*

I E
E S E

I

δβ δ+ + +  

* *
*

T R
I I bT bT

T R
γ γ+ + + + ,        (22) 

2 2

1 2

* ( *) ( *) *
*

S S S S S S
Y Q E I aR aR

S S S S
β β− −= + + + +

2

1

( *) ( *)
*

S S E E
S

S E
µ β− −+ + 2 2

*
*

E S
IS I

E
β β+ +

2

2 2

( *)
* * ( ) *

E E
IS E S E

E
β β δ µ δ−+ + + + +

* *I E

I

δ+

2 2( *) * * ( *)
( ) * * ( )

I I T R R R
m I I bT a

I T R R
γ µ γ γ µ− −− + + + + + + + . (23) 

If X Y< we obtain 0
dL

dt
< . 0

dL

dt
=  if and only if 

*S S= , *E E= , *I I= , *T T=  and *R R= . 

Then the largest compact invariant set 

( *, *, *, *, *) : 0
dL

S E I T R
dt

 ∈ Ω = 
 

 is the singleton { }* ,E  

where *E  is the endemic equilibrium. Therefore by Lassale 

Invariance principle, *E  is globally asymptotically stable if 

X Y< . 

4. Model with Control 

4.1. Introduction 

In this section, the mathematical model (1) is extended by 

incorporating control variables 1( )u t
 
and 2 ( )u t , where 

1( )u t = Control measure due to quarantine of exposed and 
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infected humans, 

2 ( )u t = Control measure due to efficacy of treatment of 

drug used for Ebola virus victims. 

Then the model becomes 

1 1 2(1 )( )
dS

Q u E I S aR S
dt

β β µ= − − + + −  

1 1 2(1 )( ) ( )
dE

u E I S E
dt

β β δ µ= − + − +  

( )
dI

E m I
dt

δ γ µ= − + +             (24) 

2(1 )
dT

I u bT T
dt

γ µ= − − −  

2(1 ) ( )
dR

u bT a R
dt

µ= − − +  

where the control functions are bounded i.e. 10 ( ) 1u t≤ ≤  and

20 ( ) 1u t≤ ≤ . 

4.2. Analysis of the Ebola Optimal Control Problem 

Here we aim at minimizing the infections of Ebola Virus 

disease, while optimizing 1( )u t  (treatment and Quarantine of 

individuals) and 2 ( )u t (efficacy of treatment drug used for 

treating Ebola virus disease victims). In order to minimize 

infection, it is required to minimize the objective function 

( ) ( ) ( ) ( )
0

2
2

1 2 1 2 3 4

1

1
( , )

2

T

i i
t

i

J u u A S t A E t A T t A R t B u dt

=

 
= + + + + 

 
 

∑∫  (25) 

subject to control problem ( ) ( ) ( ) ( )( )1 2,  ,  ,  x t g t x t u t u t′ = , 

with ( )0 0x t x=  and ( )x T  free variable. iB ’s are relative 

costs of intervention over 0 ,  t T   , The constants 1A , 2A , 3A  

and 4A are positive weights. It is then intended to find optimal 

controls *
1u  and *

2u , such that ( ) ( )* *
1 2 1 2, min ,J u u J u u= , 

where 10 1u≤ ≤  and 20 1u≤ ≤ . 

The Pontryagin maximum principle will be used to suggest 

the necessary optimal conditions, by forming Hamiltonian 

function, 

( ) ( ) ( ) ( )1 2 3 4H A S t A E t A T t A R t= + + +  

( ) ( )( )
2 5

2
1 2

1 1

1
, ,

2
i i i i

i i

B u g x u t u tλ
= =

+ +∑ ∑      (26) 

where ( ) ( )( )1 2, , ,ig x u t u t t  are the equations on the right hand 

side of the Ordinary differential equation of Control problem and 

iλ  are co-state variables with 1,2,3,4i =  and 5 . 

Theorem 3: There exists a pair of optimal controls 

( )* *
1 2,  u u

 
and optimal solution ( )* * * * *, , , ,S E I T R

 
that 

minimizes ( )1 2,J u u  also there exist adjoint functions ( )i tλ  

for 1,2,3,4i = and 5  for Hamiltonian ( )H , 

( ) ( ) ( ) ( ) ( )( )( ) ( )( )( )* *
1 2 3 4 1 1 1 2 1 1 1 2 2 1 1 2

1 1
1 1

2 2
H A S t A E t A T t A R t B u B u Q u E I S aR S u E I Sλ β β µ λ β β= + + + + + + − − + + − + − +   (27) 

( ) ( )( )3E E m Iδ µ λ δ γ µ− + + − + +
 

( )( )4 21I u bT Tλ γ µ+ − − −  

( ) ( )( )5 21 u bT a Rλ µ+ − − +  

Such that, 

( )( )( )1
1 1 1 1 21

d H
A u E I

dt S

λ λ β β µ∂= − = − + − + −
∂

 

( )2 1 2E Iλ β β− + , 

( )2
2 1 1 11

d H
A u S

dt E

λ λ β∂= − = − + −
∂

 

( )2 1 1 31 u Sλ β λ δ− − − , 

( ) ( ) ( )3
1 1 2 2 1 2 3 41 1

d H
u S u S m

dt I

λ λ β λ β λ γ µ λ δ∂= − = − − − + + + −
∂

 (28) 

( )( ) ( )4
3 4 2 5 11 1 ,

d H
A u b u b

dt T

λ λ µ λ∂= − = − + − + − −
∂

 

( )5
4 1 5 .

d H
A a a

dt R

λ λ λ µ∂= − = − − + +
∂

 

The Transversality conditions are 

( ) 0i Tλ = , for 1,2,3,4i = and 5 .     (29) 

The pair of Optimal controls ( ) ( )( )* *
1 2,  u t u t  is obtained by 

solving for ( )1u t and ( )2u t
 
in optimality conditions 

1

0
H

u

 ∂ = ∂ 
 and 

2

H

u

 ∂
 ∂ 

 as suggested by [19]. 

( )1 1 1 1 2
1

1
H

B u E I S
u

λ β β∂ = + +
∂  

( )2 1 2 0E I Sλ β β− + = , 
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2 2 4 5
2

0.
H

B u bT bT
u

λ λ∂ = + − =
∂         (30) 

Then 

( ) ( )1 2 2 1
1

1

E I S
u

B

β β λ λ+ −
=  

( )5 4
2

2

bT
u

B

λ λ−
=              (31) 

Consequently, 

( ) ( )1 2 2 1*
1

1

max 0,  min 1,  ,
E I S

u
B

β β λ λ  + − =    
   

( )5 4*
2

2

max 0,  min 1,  .
bT

u
B

λ λ  − =    
   

    (32) 

By standard control arguments as suggested by [20], we 

have 

1

*
1 1 1

1

0,   0

,   0 1

1,   1

if u

u u if u

if u

≤
= < <
 ≥

 

2

*
2 2 2

2

0,   0

,   0 1

1,   1

if u

u u if u

if u

≤
= < <
 ≥

   (33) 

5. Numerical Simulations of the Model 

with Control 

In this section, we illustrate the analytical results of the 

study by carrying out numerical simulations of the model with 

control i.e. model system (23) using the set of estimated 

parameter values given in the Table 1 below. 

Table 1. Parameter values used for Model Simulation. 

Parameter Value(per month) Source 

1β  0.16 [18] 

2β  0.12 Estimated 

µ  0.1 Estimated 
m  0.5 [18] 
γ  0.3086 [18] 

δ  0.83 [18] 

b  0.063 [18] 

a  0.82 Estimated 

Q  40 Estimated 

Initial values are estimated as 

(0) 30,  (0) 20,  (0) 18,  (0) 17S E I T= = = = and (0) 12R = . 

The weights 100i iA B= = , for 1,2,3,4i =  and 5 are used, in 

order to show the effect of optimizing control measures in a 

control problem (23) when, 

No control is applied to a system of equations, 

Only a control measure due to efficacy drug used for 

treating an Ebola virus disease victim 2( )u is applied, 

Only a control measure due to quarantine of exposed and 

susceptible individuals 1( )u is used, 

Both controls, which are 1u  (control measure due to 

quarantine of exposed and susceptible individuals) and 2u

(control measure due to efficacy drug used for treating an 

Ebola virus disease victim) are used in control problem. 

Figure 2 below shows the simulation of Ebola control 

problem, when there is no control applied, that is 1 2 0u u= = . 

Figure 2(a), shows that when there is no control, the number 

of susceptibles is reduced with time due to removal by 

infections. Figure 2(b) shows that the exposed individuals 

increase with time before being reduced by removal of 

exposed individuals to infected population. Figure 2(c) shows 

that infected population increases with time. Figure 2(d) 

shows that treated population increases with time and figure 

2(e) shows that recovered individuals are reduced with time. 

 

 

Figure 2. Simulation of Ebola control problem, when there is no control 

applied, that is 1 2 0u u= = . 

Therefore the disease will persist in the population for a 

long time, until some interventions strategies are introduced in 

the population. 

Figures 3 below show the simulation of an objective 

function for Ebola virus disease when only a control 
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measure 1( )u  due to quarantine of exposed and susceptible 

individuals is applied. 

Figure 3(a) shows that susceptible population increases 

with time. Figure 3(b) shows that the exposed population 

decreases with time. Figure 3(c) shows that the infected 

population increases with time. Figure 3(d) shows that the 

treated population decreases with time due to reduction of 

infected population with time. Figure 3(e) shows that the 

recovered population will be decreases with time due to 

reduction of treated population with time. Figure 3(f) shows 

the control profile whereby 1u (control measure due to 

quarantine of exposed and susceptible individuals) is set to the 

maximum and there is no control of efficacy drug used for 

treating Ebola virus disease victim 2( 0)u = . 

 

 

Figures 3. Simulation of the objective function for Ebola virus disease when 

only a control measure 1( )u  due to quarantine of exposed and susceptible 

individuals is applied. 

Therefore by quarantining the exposed and susceptible 

population only, there will be reduction of disease persistence 

in the population, due to reduction of population in exposed 

and infected classes. 

Figures 4 below, show the simulation of control problem 

(23), when only the control measure due to efficacy of drug 

used for treating Ebola virus disease victim 2( )u  is 

optimized. 

 

 

Figure 4 Simulation of control problem (23), when only the control measure 

due to efficacy of drug used for treating Ebola virus disease victim is 

optimized 

Figure 4(a) shows that with one control, there will be no 

changes in susceptible population with time. Figures 4(b) and 

figure 4(c) show that there will be a slight reduction in 

exposed and infected populations with time. Figure 4(d) 

shows that there will be an increase in treated population with 

time. Figure 4(e) shows that there will be a decrease of 

recovered population with time due to the decrease in infected 

population with time. 

Therefore optimizing the control measure due to efficacy of 

drug used for treating Ebola virus disease victim minimizes 

infections by reducing exposed and infected population while 

maximizing treatment. 

Figure 5 below shows the simulation of control problem 

(23), when both controls 1u (control measure due to 

quarantine of exposed and susceptible individuals) and 2u

(control measure due to efficacy of drug used for treating 

Ebola virus disease victim) are employed. 
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Figure 5. Simulation of control problem (23), when both controls are 

employed. 

When both controls are employed, figure 5(a) shows that 

susceptible population increases with time. Figures 5(b) and 

figure 5(c) show that exposed and infected populations 

decrease with time respectively due to the decrease of number 

of people who acquire new infections. Figure 5(d) shows that 

treated population decreases with time due to reduction of the 

infected population. Figure 5(e) shows that recovered 

population are decreases with time due reduction of treated 

population with time. Figure 5(f) shows the control profile 

whereby 1u (the control measure due to quarantine of 

exposed and susceptible individuals) remains at maximum up 

to the terminal time and 2u (control measure due to efficacy 

drug used for treating Ebola virus disease victim) remains at 

maximum for at least two months before finally decreasing 

exponentially to the minimum. 

From the simulations of the objective function, it can be 

seen that optimizing a control measure due to quarantine of 

exposed and susceptible individuals only ( 1u ) has a greater 

effect in reduction of Ebola virus disease than using a control 

measure due to efficacy drug used for treating Ebola virus 

disease victim only ( 2u ), since optimizing 1u
 
only reduces 

the exposed and infected population more than optimizing 2u  

only. Also the simulations show that optimizing both the two 

controls ( 1u and 2u ) have a significant impact in reduction of 

disease transmission. 

6. Conclusions 

A mathematical model for the Ebola virus disease in the 

absence of control measures was developed and analysed. 

Using Routh Hurwitz criteria, it was established that the disease 

free equilibrium is locally asymptotically stable whenever the 

reproduction number is less than one ( )0 1R < . The endemic 

equilibrium was determined and found to be locally 

asymptotically stable whenever the reproduction number is 

greater than one ( )0 1R > . By applying two controls, i.e. 

treatment and Quarantine of individuals and efficacy of 

treatment drug used for treating Ebola virus disease victims, the 

optimal control problem was analysed so as to minimize the 

infections of Ebola Virus disease, while optimizing the controls. 

The control problem was finally simulated in order to examine 

the effect of one control or both controls in controlling Ebola 

virus disease. It was found that, optimizing a control measure 

due to quarantine of exposed and susceptible individuals only is 

more effective in reduction of Ebola virus disease than using a 

control measure due to efficacy drug used for treating Ebola 

virus disease victim only. However, simulations further showed 

that optimizing both of the two controls have a significant 

impact in reduction of disease transmission. 
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