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Abstract: Many engineering applications involving radioactive materials requires the time history of the radioactivity of 

nuclides within a decay chain. The system of differential equations with initial conditions or initial value problem describing 

radioactive decay of a parent and daughter nuclides was posited by Ernest Rutherford who was awarded a Noble Prize in 1910 

for this work. Harry Bateman (1910) provided an analytic solution to the radioactive decay chain problem with the constraint 

that initial inventory of all daughter elements is zero. Required data for the decay chain calculation consists of the parent and 

all daughters’ radioactive half-life. The half-life for essentially all radionuclides has been established and is available from 

multiple sources. Solutions other than Bateman’s (non-zero initial conditions) can be computed analytically but become 

unwieldy for longer decay chains. For this reason, many applications use a numerical solution. However, a numerical solution 

can require constraints on the time step size. The proposed method of false rates provides a unique algorithm for the decay 

chain activities. The method treats the decay chain with arbitrary initial conditions and the calculation is analytic or exact. The 

method is unexpectedly simplistic. An example decay chain calculation compares the solutions by the method of false rates 

with a numerical method. The comparison is a verification of the method of false rates calculation. The method of false rates is 

easily coded as a stand-alone application or as a sub-module of a more general code such as a contaminant transport model. 
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1. Introduction 

Radioactive materials have applications in many 

disciplines. A short list includes 

a) Nuclear medicine 

b) Reactor fuel for power generation 

c) Inspection of manufacture metal materials and integrity 

of welds 

d) Radiocarbon dating 

e) Production of nuclear weapon materials 

f) Environmental remediation of nuclear waste 

Computer models for radioactive processes are found in 

the private sector [1-3]. In most cases the private sector 

models are proprietary and require the purchase of a license. 

Generally, the radioactive decay chain calculation of the 

private sector codes is only a minor portion of the possible 

algorithmic solutions of numerous mathematical problems. 

For the private sector models the source code is not provided 

and specific numerical algorithms are not disclosed. The 

government laboratories [4-6] provide numerous radioactive 

decay calculators. Information on the use of these decay 

calculations is provided, but again the numerical algorithm 

and source code are not disclosed. Further, most radioactive 

decay chain calculators are specific to a stated application. 

The decay chain calculator proposed introduces no model 

constraints and is unusually simplistic. 

The mathematical model proposed by Ernest Rutherford 

for the decay chain mass is a system of first order linear 

homogeneous constant coefficient differential equations 

���
�� � ���	�, 	��0
 � 	��                        (1) 

���
�� � ���	� � ����	���, 	��0
 � 0, � � 2,⋯ , �    (2) 

where 	� � ��� nuclide mass, ��	 � ��� nuclide decay rate, 

K=decay chain length. 
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In Eq. 2 the first term in the derivative expression 

represents the rate of mass loss to daughter decay, while the 

second term represents the rate of mass gained from ingrowth 

of the preceding element in the decay chain. The decay chain 

ends if the last element in the chain is stable (non-

radioactive) or if the application regards further daughters as 

unimportant to the investigation. 

In 1910 Harry Bateman [7] applied the method of Laplace 

Transform to provide a solution to Rutherford’s model. 

Bateman’s solution requires zero initial mass for all 

daughters in Eq. 2. Bateman’s solution for the kth element in 

the chain is 

	���
 � ���
�� ∑ ������ �� !"�����
,  

where 
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An algebraic solution of Bateman’s equations requiring an 

eigenvalue/eigenvector calculation and matrix inversion is 

demonstrated in [8]. More recent work has focused on error 

estimations and a power law approximation for Bateman’s 

solution [9, 10]. Much of the analysis for decay chain 

calculations focus on the Bateman’s equations. The method 

of false rates is not limited by the initial concentration 

constraint imposed by Bateman’s solution. 

For nuclear waste management regulatory limits are 

expressed in terms of nuclide activity, 	) = �	,  which 

represents a mass rate of change. In certain applications, such 

as the remediation of nuclear waste sites, the initial mass of 

daughter elements can be greater than zero. The system of 

differential equations for activity with non-negative initial 

conditions is 
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These results and a thorough treatment of the physics of 

radioactivity are provided in [11]. 

2. Half-Life and Decay Rate 

The half-life of a radionuclide element, denoted ��/, , is 

determined by solving Eq. 3 for the time at which the 

radionuclide activity is equal half the initial activity. The 

nuclide activity decays according to 

)��
 = )� !"�−��
.  

The activity at half-life satisfies 

)-��/,. =
*�

,
= )� !"-−���/,..  

Solution for the half-life is 

��/, = /0�,


�
.  

If the half-life is known the decay rate is 

� = /0�,


��/1
.  

3. Decay of Parent and Single Daughter 

Consider the system of differential equations for nuclide 

activity with non-negative initial conditions, Eqs. 3 and 4. 

For a parent and single daughter the system is 
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The equation for the parent is separable with solution 

)���
 = )�
� !"�−���
                          (7) 

Substitute )���
 into Eq. 6 yields 

�*1
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.  

The solution for the daughter activity is 

),��
 = )�
� �1
�1���

2 !"�−���
 −  !"�−�,�
3 + ),
� !"�−�,�
 

(8) 

This analytic approach for the parent and first daughter 

activity is used to construct a solution for all remaining 

daughters in the decay chain. 

4. Method of False Rates for Multiple 

Daughters 

Suppose the decay chain has two or more daughters. 

Assume it is of interest to calculate the nuclides decay time 

history. Introduce a time discretization, �� < ��	 < �, <
	⋯ 	< �0�� < �0, where �� is initial time and �0  is end-time. 

If n=1, the decay occurs over a single time step. Assume the 

solution is advanced to ��. Then the solution at ��5� over time 

step Δ� = ��5� − �� for the parent and first daughter activity 

follows from Eqs. 7 and 8 

)����5�
 = )����
 !"�−��Δ�
                    (9) 

),���5�
 = )����

�1
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2 !"�−��Δ�
 −  !"�−�,Δ�
3 + ),���
 !"�−�,Δ�
                          (10) 

Now focus on the solution for the second daughter activity. 

The parent and first daughter solution at time ��5�  are 

computed from Eqs. 9 and 10. Assume that the first 

daughter’s decay masquerades as a parent decay with false 

rate �7,. Then 
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Solution of Eq. 11 for the false decay rate yields 

�7, � �
8� 9: ; *1��%


*1��%<�
=                       (12) 

With the false decay rate representing the first daughter’s 

decay as a parent, the second daughter decay is modeled by 

Eq. 10 with nuclide index incremented by one 

)>���5�
 � ),���
 �?
�?��@1 A !"-��7,Δ�. �  !"���>Δ�
B � )>���
 !"���>Δ�
                            (13) 

For a third daughter, the second daughter’s decay is 

assumed to decay as a false parent, which provides a false 

decay rate for the second daughter. This false decay rate is 

used with nuclide index incremented in Eq. 14 to calculate 

the third daughter’s activity, )C���5�
.  This iterative 

calculation is continued to the end of the decay chain. 

Subsequently, this method is referenced as the method of 

false rates. 

For many applications the decay history is required. For 

example, if the decay calculation is included in a contaminant 

transport model and the contaminant transport is a discrete 

model, say a finite difference model, the transport model 

takes relatively small time steps compared to the total run 

time in order to control truncation error. Consequently, the 

decay calculation is performed within each time step of the 

transport calculation. 

5. Example of Decay Chain Calculation 

Consider the decay chain involving the following 

radioactive isotopes: 

DEFGEH,CC  decays to I9E�J:GEH,C�  decays to KFL:GEH,>M  decays to NOJFGEH,>,  decays to PLQGEH,,R . 
The half-life and initial condition for each decay-chain 

element is provided in Table 1. 

Table 1. Element Half-Life and Initial Value. 

radionuclide half-life [yr] initial value [Ci] 

Curium-244 18.1 1000 

Plutonium-240 6564 5000 

Uranium-236 2.342E7 0 

Thorium-232 1.405E10 100 

Radium-228 5.75 0.1 

Note Ra-228 is radioactive but assume for this example the 

daughters of Ra-228 are not of interest. The decay chain and 

half-life data are obtained from [12]. For comparison a 

numerical solution is calculated with the 4
th

 order Runge-

Kutta (RK) method [13]. The decay chain models (MFR and 

RK) are coded in Excel
®
. Decay is modeled over the time 

interval [0, 200 yr] with 200-time steps or Δ� � 1	TF . 

Assume the unit for activity is Curie [Ci]. Since the initial 

activity of U-236 is zero, the false rate for U-236 on the 

initial time step is calculated as the following variant of Eq. 

12 

�7> � 1
Δ� 9: U ),�0
)>�Δ�
V. 

The comparison of the two methods (MFR and RK) at 200 

yr is shown in Table 2. The results for Cm-244 show a 

difference in the 8
th

 significant digit, while other nuclides 

agree to 8-significant digits. Figure 1 is the time history of 

the nuclide activity as calculated by the method of false rate 

(MFR) and Runge-Kutta (RK). The comparison shows very 

good agreement. 

Table 2. Decay Activity at 200 Years. 

Nuclide MFR RK 

Cm-244 4.7173892E-01 4.7173898E-01 

Nuclide MFR RK 

Pu-240 4.8982150E+03 4.8982150E+03 

U-236 2.9300007E-02 2.9300007E-02 

Th-232 9.9999999E+01 9.9999999E+01 

Ra-228 9.9999999E+01 9.9999999E+01 

 

Figure 1. Decay History for Method of False Rates (MFR) and Runge-Kutta 

(RK). 

Consider the qualitative behavior of results in Figure 1. In 

the 200 yr run time the Cm-244 decays by approximately 11 

half-lives, which results in more than three orders of 

magnitude decay. The Pu-240 decays over 0.3 half-lives. The 

Pu-240 decay together with the ingrowth from Cm-244 

shows a slight decay response (see Table 1). The half-lives of 

U-236 and Th-232 are several orders of magnitude greater 

than 200 yrs. The response of U-236 with initial activity zero 

is due to ingrowth of Pu-240. From Table 1 results, Th-232 

show almost no decay. Finally, the decay of the Ra-228 

demonstrate an interesting behavior in which the activity 

increases and is asymptotic to Th-232 activity. For the Ra-

228 calculation �W � �XY,,R � 0.12/TF  and �7C � �7Z�,>, ��2.5\ � 11/TF , where �7C  is approximately 10 orders of 
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magnitude less than �W. The result for Ra-228 activity from Eq. 13 with incremented nuclide index is 

 

)W���5�
 � )C���
 �]
�]��@^ A !"-��7CΔ�. �  !"���WΔ�
B � )W���
 !"���WΔ�
.  

The estimate �7C ≪ �W provides the approximation 

)W���5�
 ` )C���
21 �  !"���WΔ�
3 � )W���
 !"���WΔ�
 � )C���
 � 2)W���
 � )C���
3 !"���WΔ�
.  
The 2

nd
 term in the sum decays to zero with rate �W. This 

demonstrates that the activity for Ra-228 is asymptotic to the 

Th-232 activity. This behavior is called secular equilibrium 

and occurs when the decay rate of the daughter (Ra-228) is 

much greater than the decay rate of the daughter’s preceding 

element in the decay chain (Th-232). 

 

Figure 2. Decay Chain with Both Bifurcation and Confluence. 

6. Other Decay Modes 

The former analysis and example considered a decay chain 

for which each daughter nuclide has a single predecessor and 

a single successor. Radioactive decay can also occur in the 

following modes: 

A single nuclide can decay to two distinct nuclides 

(bifurcate). 

Two nuclides can decay to the same nuclide (confluent). 

The decay chain shown in Figure 2 demonstrates both the 

above cases. In Figure 2 the nuclides are indexed for 

reference. 

The decay of Cm-243 bifurcates to both Am-243 and Pu-

239 with stoichiometry coefficients 0.0024 and 0.9976, 

respectively. The bifurcation from Cm-243 to Am-243 and 

Pu-239 requires the solutions of the rate equations for Am-

243 and Pu-239 include the corresponding stoichiometric 

coefficient as a scaler multiplier of the Cm-243 decay rate. 

The decay from Am-243 to Np-239 requires a false rate 

for decay of Am-243. The decay of Cm-243 (1) and Np-239 

(3) to Pu-239 (4) is confluent. The analysis for the first 

daughter equation, Eq. 8, does not include this case. The 

differential equation for activity of Pu-239 (4) analogous to 

Eq. 4 is 

�*^
�� � ��C)C � 0.9976�C)� � �C)>              (14) 

If Np-239 (3) is treated as a false parent with false rate, 

then the solution of Eq. 14 yields a result analogous to Eq. 8 

)C��
 � )�� �^
�^��.ddeM�� 2 !"��0.9976���
 �  !"���C�
3 � )>� �^

�^��@? A !"-��7>�. �  !"���C�
B � )C� !"���C�
        (15) 

As indicated in Eq. 15, the calculation for Pu-239 (4) 

activity requires a Np-239 (3) false rate. The calculation 

order would necessarily agree with the order of indexing. 

7. Conclusion 

For decay chain calculations the advantages of the method 

of false rates is its simplicity and the method of false rates 

provide an exact solution for any time step. After calculation 

of the activity for the parent and first daughter, the algorithm 

requires evaluation of the false decay rate for the first 

daughter and the application of daughter activity, Eq. 13, for 

the activity of the 2
nd

 daughter. This step is repeated for 

successive daughters. The method takes advantage of the 

structure of the decay chain system of differential equations 

and is easily implemented. 

For the other decay modes, the impact of the mode on 

the rate equations and the corresponding solutions are 

discussed. With the analysis of the treatment of the 1
st
 

daughter solution for the confluence case, the method of 

false rates is applicable to both the bifurcation and 

confluence modes. 
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