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Abstract: In this paper, RMSE and functional composition of residual are used as correction factors for tuning Hata model in 
the suburban area and 800-900MHz GSM frequency band. The study is based on empirical measurements conducted at Abak 
town, a suburban area in Akwa Ibom state, Nigeria. The tuned model is obtained by adding the correction factor to the original 
Hata pathloss model for the suburban area. The results showed that the functional composition of residual - based tuning 
approach has better prediction performance when compared with the RMSE-based tuning approach. Particularly, when the 
functional composition tuning approach is employed Hata model has the lowest RMSE value of 4.47, the highest prediction 
accuracy of 97.19% and the highest competitive success rate of 64.29%. On the other hand, the RMSE-tuned Hata model has a 
higher RMSE value of 7.03, lower prediction accuracy of 96.19% and the lower competitive success rate of 35.71%. 
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1. Introduction 

Accurate prediction of pathloss is very essential in GSM 
network planning and optimization. Pathloss is the reduction 
in power density of an electromagnetic wave signal at it 
propagates from the transmitter to the receiver [1]. 
Propagation pathloss models are used to calculate pathloss 
during transmission of a signal so as to predict the mean 
signal strength for an arbitrary transmitter-receiver separation 
distance [2-5]. In general, pathloss models are categorized as 
empirical, stochastic and deterministic [6-8]. Among the 
three categories, the empirical models are frequently used for 
outdoor pathloss predictions. However, in practice, empirical 
pathloss model tuning is usually required due to significant 
drop in prediction performance of empirical models when 
applied in the environments other than the ones they are 
designed. 

Generally, the goal of model tuning is to minimize the 
difference between measured pathloss and corresponding 
model predicted pathloss [8]. The tuning can be done by 
adding correction factor to the original model or by 

modifying the coefficients of some of the model’s 
parameters. Among the different model tuning approaches, 
the Root Mean Square Error (RMSE) based approach has 
been the easiest and most popular. In the RMSE-based 
tuning approach, the RMSE between the predicted and the 
measured pathloss is used as the correction factor which is 
either added or subtracted from the model to minimize its 
prediction error. After tuning, the pathloss model prediction 
performance is evaluated using statistical parameters such 
as the RMSE, the coefficient of determination (R�), among 
others. According to available literatures, the performance 
of a pathloss model is considered acceptable if it provides 
an overall RMSE of about 6-7dB for urban areas and 10 
to15dB for suburban and rural areas [6-8]. Studies have also 
shown that most empirical pathloss models have high 
prediction errors with RMSE above the given acceptable 
range for the particular environment being studied. 
Therefore, model tuning is usually employed to reduce the 
model prediction error so that the RMSE falls within the 
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acceptable range. 
Although adding or subtracting the RMSE to the original 

model may bring down the prediction error to the acceptable 
range, however, the model with its RMSE closest to zero is 
usually preferred. Functional composition of residual can be 
used to improve on the prediction accuracy of pathloss model 
as well as minimize the prediction error better than the 
RMSE. In this paper, functional composition of residual and 
RMSE based correction factors are used for tuning Hata 
model for suburban area in Abak community located in Akwa 
Ibom state. The prediction performance of the tuned models 
is compared in terms of RMSE, prediction accuracy and 
competitive success rate. 

2. Review of Hata’s Propagation Model 

Hata pathloss model is a closed-form empirical 
mathematical expressions use to represent the graphical 
pathloss data provided by Okumura. Essentially, Hata model 
simplifies calculation of pathloss based on measurements 
made by Okumura in urban and suburban areas at Japan in 
1968 [9], [10]. Okumura’s presented his pathloss data 
graphically whereas, Hata simplifies calculation of 
Okumura’s pathloss by articulating the pathloss in a 
closed-form empirical mathematical equations for the 
different kinds of environments provided in the original 
Okumura pathloss graph plots. Hata's equation are classified 
into three models based on the environment, namely, urban, 
suburban and rural areas [9-11]. Rural are includes open 
space and areas with no tall trees or building in path. The 
suburban area includes village highway scattered with trees 
and house with some obstacles near the mobile but not very 
congested. The urban area is built-up city or large town with 
large building and houses [9]. 

Similar to Okumura model, the Hata model is presented in 
the urban area propagation loss as a standard formula and 
provide correction equations for suburban and rural areas 
[11-13]. For urban rural areas, the Hata model median 
pathloss equations are given by: 

������(	
��
) 	= 69.55 + 26.16 ∗ log��(�) − 13.82 ∗
log��(ℎ�) 	− #(ℎ$) + 	H	         (1) 

H = (	44.9 − 	6.55 ∗ log��(ℎ�))	log��(')	    (2) 

Where 
� #(ℎ$) = correction factor for effective mobile antenna 

height. For a small to medium size city #(ℎ$) is given 
as; 

#(ℎ$) = (1.1 ∗ log��(�) − 0.7+ ∗ ℎ$ 	− 	(1.56 ∗ log��(�) − 0.8+	(3) 

� f = frequency in MHz; 150 MHz≤ f≤ 1000MHz 
� d = link distance in km; 1 km ≤ d ≤ 20km 
� ℎ� = height (in metres) of the base station antenna; 30m 

≤ℎ� ≤ 200m 
� ℎ$ = height (in meters) of the mobile antenna; 1m≤ 
ℎ$≤ 10 m 

������(,	�	
��
) 	= ������(	
��
) − 	5.4 − 	2 -log�� . /
�01	2

�	 (4) 

3. Methodology 

Measurement of Received Signal Strength (RSS) for the 
GSM network was done using Handheld Samsung Galaxy S 
Duos S7562. The path measurements were taken is in Abak 
town, a suburban area in Akwa Ibom state, Nigeria. The 
Samsung Galaxy S Duos S7562 phone has Netmonitor 
Adroid application installed on it. With the Netmonitor 
application, the android phone can monitor 
GSM/CDMA/LTE network’s current and neighboring cell 
information, Received Signal Strength (RSS) in dB and the 
current cell’s CID, LAC. The Netmonitor application, uses 
the GPS/geolocation to generate the longitude and latitude of 
the mobile phone and also shows the location of the mobile 
phone and the GSM base stations on a map. The distance 
between each measurement point and the base station are 
determined using haversine formula [13-15]. 

3.1. Calculation of the Measured Pathloss from the 

Measured RSS 

The measured RSS values are converted to measured 
pathloss (��$(34))	as follows [13-16]: 

��$(34) = PBTS + GBTS + GMS – LFC – LAB – LCF – RSS(dBm) (5) 

where ��$(34)	is	the	measured	pathloss 
RSS is the measured Received Signal Strength (RSS) in 

dBm 
PBTS is the transmitted power (dBm), 
GBTS is the transmitter antenna Gain (dBi), 
GMS is the receiver antenna gain (dBi), 
LFC is the feeder cable and connector loss (dB), 
LAB is the antenna body loss (dB) and 
LCF is the combiner and filter Loss (dB). 
The values of these parameters are given as [16-18]: 
PBTS = 46 dBm, GBTS = = 18.15 dBi, GMS = 0dBi, LFC = 3 

dB, LAB = 3 dB, LCF = 4.7 dB. Then, 

��$(34) = 53.5 dBm.– RSS(dBm)      (6) 

3.2. Performance Analysis of the Model 

i. Root Mean Square Error (RMSE): Root Mean Square 
Error (RMSE) is given as: 

RMSE = 	 CD	�
 -∑ FG$(H) − G(I)(H)		F�H	J	
H	J	� 2KL
     (7) 

Where G$(H)  is the ith actual or measured value and 
G(I)(H)		is the ith predicted value. 

ii. Prediction accuracy: Prediction accuracy is given as: 

Prediction	Accuracy = R1 − �

 	S∑ TFUV(W)	XU(Y)(W)		F

UV(W)	 	THJ
	HJ� Z[ * 100% (8) 

iii. Competitive Success 
The competitive success metric is the percentage of times 
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in a given data set that a given model has made the best 
prediction. For instance, for each of the n measurement 
points, the model that makes the best prediction with the 
smallest prediction error is noted and the total count of the 
number of best predictions for each model is noted and 
eventually divided by the total number of measurement 
points considered in the study. 

Let \ be the number of models es considered in the study 
Let ] be the total number of data measurement points 

considered in the study 
Let _̂ be the number of times the model j makes the best 

prediction with the smallest prediction error. 
Let `a_ be the Competitive Success of the model j where; 

`a_ 	(%) = .
cd1 100%            (9) 

Meanwhile, _̂ can be determined using algorithm that is 
based on the values of the prediction errors. Let Ɛ_,f be the 
prediction error of the model j at the data measurement point x, 
where j = 1, 2,…, J and x = 1, 2,…, N,. Also, let g_,f be the an 
indicator that takes the value of 1 if the absolute value of the 
prediction error of the model j at the data measurement point x 
is the smallest, otherwise, the value of g_,f  is 0. The 
algorithm can be stated as follows; 

The algorithm for computing _̂ 
1: Initialize the counter: _̂ = 0 hij	#kk	j	 = 	1, 2, … , J 
2: hij	x	 = 	1	to	N Step 1 
3: MinimumƐf = Minimum (FƐ�,fF, FƐ�,fF, … , FƐq,fF) 
4: Next x 
5: hij	x	 = 	1	to	N Step 1 
6: hij	j	 = 	1	to	J Step 1 
7: If r	FƐt,uF ≤ 	MinimumƐuw Then 
8: g_,f 	= 1 
9: xkye 
10: g_,f 	= 0 
11: Endif 
12: _̂ = _̂ + g_,f 
13: Next j 
14: Next x 

3.3. Model Tuning Process and Model Correction Factors 

The measure pathloss, the model predicted pathloss and the 
prediction error or prediction residual is related as functions of 
distance as follows: 

P (d) = P{(')+ e (d) ṔÊŘ P{(')      (10) 

e (d) = P (d) - P{(')           (11) 

where, 
P (d) is the empirically measured pathloss at distance d 

from the transmitter, 
P{(')is the model predicted pathloss at distance d from the 

transmitter and 
e (d) is prediction residual at distance d from the transmitter. 

The prediction residual consists of both predictable and 
random error components. The predictable component of the 

residual at distance d from the transmitter is denoted as E (d) 
whereas the random component is denoted as Ɛ. The random 
component (Ɛ) is not a function of d so it is modeled as a lump 
sum of all the random errors associated with the measurement. 
Hence, 

e (d) = E (d) + Ɛ               (12) 

P (d) = P{(')+ E (d) + Ɛ           (13) 

Model tuning or optimization process seeks to adjust the 
model so that the tuned model can as well predict the 
predictable components of the error thereby reducing the error 
to only the random component. Hence the tuned model 
denoted as ŶT (d) is given by; 

P{~(')= P{(')+ E(d)             (14) 

Essentially, E (d) is the model correction factor that can be 
used to minimize the prediction error. 

In most literatures examined, pathloss model tuning is 
performed by adding or subtracting the RMSE to the original 
model [16-21]. In this case, E (d) which is the predictable 
component of the residual is approximated by a constant, 
namely, the RMSE between the measured and the predicted 
pathloss. Hence, the model correction factor, E (d) is equal to 
the RMSE; 

E (d) = RMSE              (15) 

P (d) = P{(d)+ RMSE + Ɛ         (16) 

P{~(d) = P{(d) + RMSE         (17) 

The predictable component of the residual can be predicted 
with respect to the Ŷ (d) is the model predicted pathloss at 
distance d. In this case, E (d) is modeled as a function of the 
predicted pathloss, where; 

E (d) = F.P{(d)1            (18) 

F.P{(d)1 is a composition function whereby the residual 

error E (d) is predicted as a function of the predicted pathloss, 
P{(d) which is a function of distance, d. Hence, in this case, 

F.P{(d)1 is the model correction factor that can be used to 

minimize the prediction error. 

P (d) = P{(d)+ F.P{(d)1	+ Ɛ       (19) 

P{~(d) = P{(d)+ F.P{(d)1        (20) 

4. Results and Discussion 

Table 1 shows the location of the measurement point 
locations and their corresponding distance from the base 
station along with the RSS, measured pathloss and Hata 
suburban model predicted pathloss the suburban and rural area 
in Aba town. 
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Table 1. The measurement point locations, distance, RSS, measured pathloss Hata suburban model predicted pathloss the suburban area in Abak, Akwa Ibom State. 

S/N Longitude Latitude d (km) RSS (dBm) Measured Pathloss (dB) Hata Suburban Predicted Pathloss (dB) 

1 7.789155 4.982758 0.060129 -57 110.5 72.5198 
2 7.789515 4.982929 0.104353 -73 126.5 80.8228 
3 7.789931 4.983284 0.163601 -78 131.5 87.4116 
4 7.790344 4.983621 0.222288 -82 135.5 91.944 
5 7.790746 4.983976 0.28132 -85 138.5 95.4021 
6 7.79117 4.984307 0.340977 -87 140.5 98.1987 
7 7.791535 4.984652 0.396284 -90 143.5 100.406 
8 7.791902 4.985023 0.453649 -91 144.5 102.4465 
9 7.792229 4.985456 0.512036 -93 146.5 104.2377 
10 7.792565 4.985879 0.570857 -98 151.5 105.834 
11 7.792873 4.986277 0.625741 -101 154.5 107.1862 
12 7.793192 4.986715 0.684713 -109 162.5 108.504 
13 7.793522 4.987129 0.742933 -117 170.5 109.7132 
14 7.793844 4.987557 0.801693 -120 173.5 110.8304 

 
From Table 1, Hata model for suburban area has RMSE of 

47.28 dB with Prediction Accuracy of 67.78%. The model’s 
performance is unacceptable since the overall RMSE is 
greater than 10 dB for suburban area [22-24]. Therefore, two 
different model correction factor tuning approaches are used 
to minimize the prediction error. Specifically, RMSE-based 
correction factor and the functional composition of prediction 

residual, F.P{(d)1-based correction factor are used. 

In the first case, the RMSE of 47.28 dB is added to each 
prediction of the Hata model for the suburban area. In the second 
case, the functional composition of the residual is generated by 
fitting nonlinear equation, E (d) to the graph of e (d) versus 
P{(d)as shown in Table 2 and figure 1 where E (d) is given as; 

E(d) = 	 �{(3)
�.�����0���0�����{(3)	�L��.������������{(3)	X�.�����0���� (21) 

Table 2. Prediction Residual (e (d)), Compositional Function Of The Hata Suburban Model Prediction Residual (E (d)) Versus Hata Suburban Model Predicted 

Pathloss, ��('). 
Hata Suburban Model Predicted Pathloss, 

�{(�) in dB 
Prediction Residual, e (d) in dB 

Functional composition Of The Hata Suburban 

Model Prediction Residual (E (d)) in dB 

72.5198 37.9802 42.2911564 
80.8228 45.6772 38.7076939 
87.4116 44.0884 39.0176944 
91.944 43.556 40.3379845 
95.4021 43.0979 41.9174979 
98.1987 42.3013 43.5781862 
100.406 43.094 45.1544616 
102.4465 42.0535 46.8430817 
104.2377 42.2623 48.5296317 
105.834 45.666 50.2123616 
107.1862 47.3138 51.7850858 
108.504 53.996 53.4619292 
109.7132 60.7868 55.1389304 
110.8304 62.6696 56.8183094 

 
Figure 1. Graph of prediction residual (e (d)), functional composition of the Hata prediction residual (E (d)) versus Hata predicted pathloss, ��(')for 

suburban area. 
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Afterwards, the functional composition, E (d) is added to the Hata predicted pathloss for the suburban area. Table 3 and 
figure 2 show the results of the two tuned Hata model for suburban area. From Table 3, the functional composition of 
prediction residual tuned Hata model has the lowest RMSE value of 4.47, the highest prediction accuracy of 97.19% and the 
highest competitive success rate of 64.29%. On the other hand, the RMSE- tuned Hata model has a higher RMSE value of 7.03, 
lower prediction accuracy of 96.19% and the lower competitive success rate of 35.71%. The functional composition of 
prediction residual based tuning approach performed better than the RMSE based tuning approach. 

Table 3. The results of tuning of the Hata model by addition of the RMSE and by addition of the Functional composition of Prediction Residual of the Hata 

model for suburban area. 

d (km) Measured Pathloss (dB 

Un-tuned Hata Predicted 

Pathloss, �{(�) in dB for the 

suburban area 

RMSE Tuned Hata 

Predicted Pathloss, in dB 

for the suburban area 

Functional composition of Prediction 

Residual Tuned Hata Predicted Pathloss, 

in dB for the suburban area 

0.060129 110.5 72.5198 119.7958858 114.8109564 
0.104353 126.5 80.8228 128.0988858 119.5304939 
0.163601 131.5 87.4116 134.6876858 126.4292944 
0.222288 135.5 91.944 139.2200858 132.2819845 
0.28132 138.5 95.4021 142.6781858 137.3195979 
0.340977 140.5 98.1987 145.4747858 141.7768862 
0.396284 143.5 100.406 147.6820858 145.5604616 
0.453649 144.5 102.4465 149.7225858 149.2895817 
0.512036 146.5 104.2377 151.5137858 152.7673317 
0.570857 151.5 105.834 153.1100858 156.0463616 
0.625741 154.5 107.1862 154.4622858 158.9712858 
0.684713 162.5 108.504 155.7800858 161.9659292 
0.742933 170.5 109.7132 156.9892858 164.8521304 
0.801693 173.5 110.8304 158.1064858 167.6487094 
RMSE 47.27608582 7.032222031 4.470521962 
Prediction Accuracy (%) 67.77671854 96.18760293 97.19000056 
Competitive Success 0 35.71428571 64.28571429 

 
The RMSE based tuning approach has the correction 

factor which is equal to the RMSE value of 7.03. Then, with 
respect to Eq. 1, the RMSE-based tuned Hata pathloss model 
(�������(,	�	
��
)����)	for suburban area is given as; 

�������(,	�	
��
)���� 	= ������(,	�	
��
) + 7.03	(22) 

Similarly, by equation (21), the functional composition of 
residual tuned Hata pathloss model (TLP��~�	(��������)���) 
for suburban area is given as; 

TLP��~�	(��������)��� 	=
LP��~�	(��������) +

�{(�)
�.�����0���0�����{(�)	�L��.������������{(�)	X�.�����0���� (23) 

 
Figure 2. Tuned and Un-tuned Pathloss Versus Distance. 

5. Conclusion 

Tuning and comparative prediction performance analysis 
of Hata pathloss model for suburban area is presented. 
RMSE-based and functional composition of residual-based 
correction factor pathloss tuning approaches are used to 
tune the Hata pathloss model for suburban area. The study 
is conducted for the GSM network in the 800-900MHz 
frequency band. The study is based on empirical 
measurements conducted at Abak town, a suburban area in 
Akwa Ibom state, Nigeria. The prediction performance of 
the two tuning approaches is compared in terms of RMSE, 
prediction accuracy and competitive success rate. The 
results show that the functional composition of 
residual-based approach performed better with lower RMSE, 
higher prediction accuracy and higher competitive success 
rate. 
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